N. G. Vallianou, S. Mitesh, A. Gkogkou, and E. Geladari, Chronic Kidney Disease and Cardiovascular Disease: is there any relationship?, Curr Cardiol Rev, vol.15, issue.1, p.55, 2019.

R. J. Rennenberg, Vascular calcifications as a marker of increased cardiovascular risk: a meta-analysis, Vasc Health Risk Manag, vol.5, issue.1, p.185, 2009.

D. Rong, An emerging function of circRNA-miRNAs-mRNA axis in human diseases, Oncotarget, vol.8, issue.42, p.73271, 2017.

R. C. Lee, R. L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, vol.75, issue.5, p.843, 1993.
URL : https://hal.archives-ouvertes.fr/in2p3-00597159

V. Metzinger-le-meuth, The expanding roles of microRNAs in kidney pathophysiology, Nephrol Dial Transplant, vol.34, issue.1, p.7, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02061515

S. Fichtlscherer, A. M. Zeiher, and S. Dimmeler, Circulating microRNAs: biomarkers or mediators of cardiovascular diseases?, Arterioscler Thromb Vasc Biol, vol.31, issue.11, p.2383, 2010.

P. Trionfini, A. Benigni, and G. Remuzzi, MicroRNAs in kidney physiology and disease, Nat Rev Nephrol, vol.11, issue.1, p.23, 2015.

F. Taibi, Possible involvement of microRNAs in vascular damage in experimental chronic kidney disease, Biochim Biophys Acta, vol.1842, issue.1, p.88, 2014.

V. Metzinger-le-meuth, microRNAs are dysregulated in the cerebral microvasculature of CKD mice, Front Biosci (Elite Ed), vol.6, p.80, 2014.

C. Z. Chen, L. Li, H. F. Lodish, and D. P. Bartel, MicroRNAs modulate hematopoietic lineage differentiation, Science, vol.303, issue.5654, p.83, 2004.

J. B. Johnnidis, Regulation of progenitor cell proliferation and granulocyte function by microRNA-223, Nature, vol.451, issue.7182, p.1125, 2008.

F. Fazi, A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis, Cell, vol.123, issue.5, p.819, 2005.

W. Kang, Stathmin1 plays oncogenic role and is a target of microRNA-223 in gastric cancer, PLoS One, vol.7, issue.3, p.33919, 2005.

J. Li, MicroRNA-223 functions as an oncogene in human gastric cancer by targeting FBXW7/hCdc4, J Cancer Res Clin Oncol, vol.138, issue.5, p.763, 2012.

H. Liang, MicroRNA-223 delivered by platelet-derived microvesicles promotes lung cancer cell invasion via targeting tumor suppressor EPB41L3, Mol Cancer, vol.14, p.58, 2015.

L. Song, Downregulation of miR-223 and miR-153 mediates mechanical stretch-stimulated proliferation of venous smooth muscle cells via activation of the insulin-like growth factor-1 receptor, Arch Biochem Biophys, vol.528, issue.2, p.204, 2012.

Z. Shan, An Endocrine Genetic Signal Between Blood Cells and Vascular Smooth Muscle Cells: Role of MicroRNA-223 in Smooth Muscle Function and Atherogenesis, J Am Coll Cardiol, vol.65, issue.23, p.2526, 2015.

A. Y. Rangrez, Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223, PLoS One, vol.7, issue.10, p.47807, 2012.

M. Ulbing, MicroRNAs 223-3p and 93-5p in patients with chronic kidney disease before and after renal transplantation, Bone, vol.95, p.115, 2017.

T. A. Harris, MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1, Proc Natl Acad Sci, vol.105, issue.5, p.1516, 2008.

S. Wang, The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis, Dev Cell, vol.15, issue.2, p.261, 2008.

A. Zernecke, Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection, Sci Signal, vol.2, issue.100, p.81, 2009.

R. Bijkerk, Hematopoietic microRNA-126 protects against renal ischemia/reperfusion injury by promoting vascular integrity, J Am Soc Nephrol, vol.25, issue.8, p.1710, 2014.

A. Zampetaki, Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes, Circ Res, vol.107, issue.6, p.810, 2010.

O. Slaby, Identification of MicroRNAs associated with early relapse after nephrectomy in renal cell carcinoma patients, Genes Chromosomes Cancer, vol.51, issue.7, p.707, 2012.

D. C. Vergho, Impact of miR-21, miR-126 and miR-221 as prognostic factors of clear cell renal cell carcinoma with tumor thrombus of the inferior vena cava, PLoS One, vol.9, issue.10, p.109877, 2014.

P. S. Mitchell, Circulating microRNAs as stable blood-based markers for cancer detection, Proc Natl Acad Sci, vol.105, issue.30, p.10513, 2008.

J. A. Weber, The microRNA spectrum in 12 body fluids, Clin Chem, vol.56, issue.11, p.1733, 2010.

D. J. Gibbings, C. Ciaudo, M. Erhardt, and O. Voinnet, Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity, Nat Cell Biol, vol.11, issue.9, p.1143, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00423288

J. D. Arroyo, Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma, Proc Natl Acad Sci, vol.108, issue.12, p.5003, 2011.

K. Wang, Export of microRNAs and microRNA-protective protein by mammalian cells, Nucleic Acids Res, vol.38, issue.20, p.7248, 2010.

K. C. Vickers, MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins, Nat Cell Biol, vol.13, issue.4, p.423, 2011.

S. S. Waikar, R. A. Betensky, and J. V. Bonventre, Creatinine as the gold standard for kidney injury biomarker studies?, Nephrol Dial Transplant, vol.24, issue.11, p.3263, 2009.

E. F. Kern, Early urinary markers of diabetic kidney disease: a nested case-control study from the Diabetes Control and Complications Trial (DCCT), Am J Kidney Dis, vol.55, issue.5, p.824, 2014.

T. Q. Nguyen, Urinary connective tissue growth factor excretion correlates with clinical markers of renal disease in a large population of type 1 diabetic patients with diabetic nephropathy, Diabetes Care, vol.29, issue.1, p.83, 2006.

E. Boes, Apolipoprotein A-IV predicts progression of chronic kidney disease: the mild to moderate kidney disease study, J Am Soc Nephrol, vol.17, issue.2, p.528, 2006.

N. A. Bhavsar, A. Kottgen, J. Coresh, and B. C. Astor, Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 (KIM-1) as predictors of incident CKD stage 3: the Atherosclerosis Risk in Communities (ARIC) Study, Am J Kidney Dis, vol.60, issue.2, p.233, 2012.

V. S. Sabbisetti, Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts pro gression to ESRD in type I diabetes, J Am Soc Nephrol, vol.25, issue.10, p.2177, 2014.

D. Fliser, Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study, J Am Soc Nephrol, vol.18, issue.9, p.2600, 2007.

H. P. Peters, High urinary excretion of kidney injury molecule-1 is an independent predictor of end-stage renal disease in patients with IgA nephropathy, Nephrol Dial Transplant, vol.26, issue.11, p.3581, 2007.

R. Nassirpour, D. Raj, R. Townsend, and C. Argyropoulos, MicroRNA biomarkers in clinical renal disease: from diabetic nephropathy renal transplantation and beyond, Food Chem Toxicol, vol.98, p.73, 2016.

S. Gilad, Serum microRNAs are promising novel biomarkers, PLoS One, vol.3, issue.9, p.3148, 2008.

A. Etheridge, Extracellular microRNA: a new source of biomarkers, Mutat Res, vol.717, issue.1-2, p.85, 2011.

K. F. Kerr, Evaluating biomarkers for prognostic enrichment of clinical trials, Clin Trials, vol.14, issue.6, p.629, 2014.

M. Xiang, U6 is not a suitable endogenous control for the quantification of circulating microRNAs, Biochem Biophys Res Commun, vol.454, issue.1, p.210, 2014.

T. C. Roberts, A. M. Coenen-stass, and M. J. Wood, Assessment of RT-qPCR normalization strategies for accurate quantification of extracellular microRNAs in murine serum, PLoS One, vol.9, issue.2, p.89237, 2014.

G. Tang, Different normalization strategies might cause inconsistent variation in circulating microRNAs in patients with hepatocellular carcinoma, Med Sci Monit, vol.21, p.617, 2015.

L. L. Lv, Isolation and quantification of microRNAs from urinary exosomes/microvesicles for biomarker discovery, Int J Biol Sci, vol.9, issue.10, p.1021, 2013.

C. S. Neal, Circulating microRNA expression is reduced in chronic kidney disease, Nephrol Dial Transplant, vol.26, issue.11, p.3794, 2011.

N. X. Chen, Decreased microRNA is involved in the vascular remodeling abnormalities in chronic kidney disease (CKD), PLoS One, vol.8, issue.5, p.64558, 2013.

O. Gidlof, Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples, Cardiology, vol.118, issue.4, p.217, 2011.

T. P. Karpetsky, R. L. Humphrey, and C. C. Levy, Influence of renal insufficiency on levels of serum ribonuclease in patients with multiple myeloma, J Natl Cancer Inst, vol.58, issue.4, p.875, 1977.

E. M'baya-moutoula, High inorganic phosphate concentration inhibits osteoclastogenesis by modulating miR-223, Biochim Biophys Acta, vol.1852, issue.10, p.2202, 2015.

R. M. O'connell, J. L. Zhao, and D. S. Rao, MicroRNA function in myeloid biology, Blood, vol.118, issue.11, p.2960, 2011.

J. Y. Yuan, MicroRNA-223 reversibly regulates erythroid and megakaryocytic differentiation of K562 cells, J Cell Mol Med, vol.13, p.4551, 2009.

E. M'baya-moutoula, A multi-omics analysis of the regulatory changes induced by miR-223 in a monocyte/macrophage cell line, Biochim Biophys Acta, vol.1864, issue.8, p.2664, 2018.

K. C. Vickers, MicroRNA-223 coordinates cholesterol homeostasis, Proc Natl Acad Sci, vol.111, issue.40, p.14518, 2014.

F. Taibi, . Metzinger-le, V. Meuth, Z. A. Massy, and L. Metzinger, miR-223: An inflammatory oncomiR enters the cardiovascular field, Biochim Biophys Acta, vol.1842, issue.7, p.1001, 2014.

X. Sun, Circulating microRNA-126 in patients with coronary artery disease: correlation with LDL. cholesterol, Thromb J, vol.10, issue.1, p.16, 2012.

H. Wang, Circulating levels of inflammation-associated miR-155 and endothelial-enriched miR-126 in patients with end-stage renal disease, Braz J Med Biol Res, vol.45, issue.12, p.1308, 2012.

D. Kaudewitz, Association of MicroRNAs and YRNAs With Platelet Function, Circ Res, vol.118, issue.3, p.420, 2016.

F. Olivieri, Age-and glycemia-related miR-126-3p levels in plasma and endothelial cells, Aging (Albany NY), vol.6, issue.9, p.771, 2014.

C. Grabher, Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb, Leukemia, vol.25, issue.3, p.506, 2011.

A. S. Levey, GFR decline as an end point for clinical trials in CKD: a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration, Am J Kidney Dis, vol.64, issue.6, p.821, 2014.

F. Y. Hsieh and P. W. Lavori, Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates, Control Clin Trials, vol.21, issue.6, pp.552-60, 2000.

, Braun Avitum AG Medical Scientific Affairs, vol.13, issue.11, pp.17-21

. Lab-mosaiques-diagnostics-&-therapeutics and G. Hannover, 27 Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany. 28 Baxter International R&D, 24 INSERM, U1048, vol.20