Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Automatic Autism Spectrum Disorder Detection Thanks to Eye-Tracking and Neural Network-Based Approach

Abstract : Autism spectrum disorder (ASD) is a neurodevelopmental disorder quite wide and its numerous variations render diagnosis hard. Some works have proven that children suffering from autism have trouble keeping their attention and tend to have a less focused sight. On top of that, eye-tracking systems enable the recording of precise eye focus on a screen. This paper deals with automatic detection of autism spectrum disorder thanks to eye-tracked data and an original Machine Learning approach. Focusing on data that describes the saccades of the patient's sight, we distinguish, out of our six test patients, young autistic individuals from those with no problems in 83% (five) of tested patients, with a results confidence up to 95%.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03599565
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : lundi 7 mars 2022 - 11:36:53
Dernière modification le : dimanche 21 août 2022 - 13:38:22

Identifiants

Citation

Romuald Carette, Federica Cilia, Gilles Dequen, Jerome Bosche, Jean-Luc Guerin, et al.. Automatic Autism Spectrum Disorder Detection Thanks to Eye-Tracking and Neural Network-Based Approach. INTERNET OF THINGS (IOT) TECHNOLOGIES FOR HEALTHCARE, HEALTHYIOT 2017, 2017, Angers, France. pp.75-81, ⟨10.1007/978-3-319-76213-5\_11⟩. ⟨hal-03599565⟩

Partager

Métriques

Consultations de la notice

23