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ABSTRACT High-resolution additive manufacturing offers access to the production of intricate archi-
tectures with small features that can revolutionize the fabrication of next-generation batteries. Relegated
to two-dimensional sheets, commercial lithium-ion batteries consist of stacked leaflets, which are man-
ufactured in restricted stacked or rolled geometries. By leveraging the most recent advancements of vat
photopolymerization (VPP), the next-generation of shape-conformable three-dimensional batteries can be
co-designed with known application requirements and provide enhanced safety and power performance
based on reduced weight and dead volume. Herein, an overview of the state of the art with perspectives
towards the development of electroactive photo-polymerizable resins for the direct fabrication of complete
multi-material three-dimensional batteries is presented. Different approaches are described, including the
formulation of composite resin through the introduction of solid electroactive particles, soluble components
or metal precursors. Finally, the impact of the thermal post-processing steps on the resulting electrochemical
properties of the VPP printed battery component or device is thoroughly discussed. This study paves the
way towards the manufacturing of a complete high-resolution shape conformable 3D battery via VPP with
enhanced power density.

INDEX TERMS Lithium-ion battery, electrodes, 3D printing, vat photopolymerization, composite.

I. INTRODUCTION
Motivated by the increasing demand of portable electronic
devices and the commercialization of electric vehicles,
the last decades have witnessed the development of new
energy storage systems. Lithium-ion batteries (LIB) have
remained the system of choice due to the promising electro-
chemical performances including high energy density, power
density, efficiency and long cycle life. Despite the impressive
commercial growth of LIB worldwide, research challenges
still remain regarding the synthesis, fabrication, electrochem-
ical performance, and safety.

In the last few years, research dedicated to LIB has
been focused on the development of unconventional three-
dimensional (3D) architectures. Originally initiated from the
work of Long et al. [1], this focus has been motivated by the
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capability of 3D battery architectures to provide higher active
exchange surface area and enhanced lithium-ion diffusion.
Such architectures improve the electrochemical performance
in terms of specific capacity, areal energy density and power
density [2], [3]. Many groups have attempted to develop 3D
arrangements of independent battery electrodes by induc-
ing an electrochemical growth of nanorods/micro-tubes/post
arrays onto a current collector serving as substrate followed
by electrochemical plating of the active material (Fig. 1)
[4]–[6]. While surface irregularities were unfortunately
introduced and often resulted in short circuits (while per-
forming the intercalation of both electrodes), these pioneering
studies have established a process and geometric architecture
well suited to be further improved with the design and fab-
rication freedom of additive manufacturing (also referred to
informally as 3D printing).

Unlike conventional fabrication techniques, additive man-
ufacturing allows the development of energy storage devices
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FIGURE 1. (a) Preparation of a carbon/polypyrrole 3D battery [4];
(b) scanning electron microscopy (SEM) image of
carbon/dodecylbenzenesulfonatedoped polypyrrole post arrays [4];
(c) SEM micrograph of electrodeposited aluminum nanorods [5]; (d) SEM
cross-sectional view of copper-nanopillars grown on a copper
substrate [6]; (e) SEM top view of nickel-nanopillars grown on a nickel
substrate [6].

such as LIB based on a layer-by-layer material deposition
fashion with the possibility of producing highly complex
3D geometries such as intricated gyroid design (Fig. 2a).
Besides the capability of manufacturing unique 3D batter-
ies architectures for power applications, 3D printing also
opens up the implementation of shape-conformable [7], [8]
or structural [9] energy storage devices by reducing dead
volume and weight within the final object (Fig. 2b). This
represents a promising solution for producing lightweight
portable devices and transportation structures including the
aerospace and aeronautical sector.

Most of the early studies reported in literature relating
to additively manufactured energy storage structures are
focused on material extrusion (ME) due to the wide avail-
ability of inexpensive desktop printers and include research
with direct ink writing [12]–[15] and fused filament fabrica-
tion [7], [8], [10], [16]–[19]. However, other additive manu-
facturing techniques such as vat photopolymerization (VPP),
are starting to be used to construct batteries. Main advantage
of VPP for battery applications is based on its improved reso-
lution ranging from 100 µm down to 100 nm (Fig. 3). Based
on the American Society for Testing and Materials, VPP
includes three technologies: stereolithography using a laser
to cure photoresins, digital light processing with a projected
image, and two-photon polymerization (2PP) in which the
intersection of two photons induces solidification. With light
defining the high resolution and intricate geometric features,
and a liquid feedstock providing improved surface finish,
these technologies outperform in terms of resolution the less
expensive thermoplastic material extrusion processes.

A summary of previous works regarding vat photopoly-
merization specifically employed for LIB applications is pre-
sented in this review. An overview of the different approaches
employed to prepare the composite resin for the printing
of electrode and electrolyte structures is discussed. Being
a relatively emerging topic, an outlook of the future inves-
tigation trends and perspectives on VPP applied to LIB is
comprehensively detailed.

II. VAT PHOTOPOLYMERIZATION
VPP is a process that selectively cures in a layer-by-layer
fashion a vat of liquid photosensitive resin composed of
a mixture of monomers, oligomers, photoinitiator, light

absorbers and photosensitizers [21]. The chemistry behind
the photo-polymerization process (free-radical) is rather sim-
ple: photons of a specific wavelength in the UV-range provide
the required energy to the photoinitiator (Fig. 4a) so that
the photocuring process propagates and builds a cross-linked
polymeric network. Acrylate-based resins (containing for
example poly(ethylene glycol) diacrylate (PEGDA)) are the
most commonly used due to their high reactivity [20]. The
process begins when the photoinitiator, for instance diphenyl
(2,4,6-trimethylbenzoyl)-phosphine oxide, absorbs the pho-
ton energy and forms two free radicals. Then a radical opens
a carbon-carbon bond in the PEGDA monomer and initiates
a chain-reaction with available vinyl bonds until only dead-
end polymer chains exist (Fig. 4b) [22], [23]. Tuning the
resin properties can be achieved through the addition of a
photo-absorber or a photosensitizer that respectively limit or
promote the photoexcitation and curing depth.

III. VPP OF BATTERIES FROM RESINS LOADED WITH
SOLID PARTICLES
Currently, no studies have reported the preparation and print-
ability of highly loaded composite resins containing solid
particles such as active materials and conductive additives
to obtain composite LIB electrodes or ceramic electrolyte
via VPP. Nonetheless, the formulation of composite resins
containing active materials/fillers had been widely investi-
gated (Table 1) for other applications including dentistry
and electronics to confer unique properties and functional-
ities (including thermal stability, piezoelectricity, mechani-
cal strength, magnetism or biocompatibility) as well as to
decrease shrinkage upon polymerization. [24], [25]

As clearly stated by Tan et al. [24], filler loading, concen-
tration and particle sizemust be thoroughly controlled to limit
the viscosity of the resin, since it could obstruct the recoating
process, and have a detrimental effect on the whole print-
ability. This issue can nonetheless be overcome by slightly
increasing the resin temperature during the printing [26],
using smaller filler particles [27] or through the introduction
of a dispersant and diluent [28]. Furthermore, when dealing
with composite resin loaded with solid particles, their den-
sity must be considered, and viscosity of the resin must be
thoroughly tuned to avoid filler sedimentation.

In this context, printing of a highly loaded compos-
ite resin with up to 53 vol% of alumina powder was
reported by Hinczewski et al. [28]. In order to increase
the ceramic fraction while maintaining a low viscosity and
homogeneous suspension, a dispersant (azeotropic mixture of
methylethylketone and ethanol 60:40 vol. ratio) and a diluent
(n-butyl acryloyloxy ethyl carbamate) were introduced, while
the vat temperature was tuned. The dispersant was reported
to act both by electrostatic and steric repulsion by dispersing
the alumina particles in a low polar organic media. Simi-
larly, other groups have reported printing of composite resins
loadedwith alumina (Fig. 5a) [29, 30], but also other ceramics
such as silica [31]–[33], silicon nitride [31], boron nitride-
silica [34] and zirconia [35].
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FIGURE 2. (a) Conventional 2D battery architecture and innovative 3D gyroid architecture; (b) Examples of shape-conformable
batteries that can be obtained thanks to additive manufacturing [10], [11].

FIGURE 3. Comparison of additive manufacturing technologies in terms
of resolution and capital cost. Adapted from Zhakeyev et al. [20]. VPP
comprises 2PP, µSLA, and SLA/DLP. 2PP stands for two-photon
polymerization, µSLA for micro-stereolithography, and DLP for digital
light processing. ME comprises DIW and FFF. DIW stands for direct ink
writing and FFF for fused filament fabrication.

It is worth mentioning that the main difficulty when con-
sidering printing a composite resin loaded with solid particles
is the resulting optical properties. Filler particles must negli-
gibly contribute to light scattering and be adequately clear to
allow satisfactory curing depth (Cd ). Derived from the Beer-
Lambert law, Cd can be expressed as (1):

Cd = DP × ln(Emax/Ec) (1)

where DP is the penetration depth of light, Emax (J/m2) the
exposure, and Ec, (J/m2) the critical minimal exposure to
initiate polymerization of the photocuring resin. For a loaded
resin, DP is a function of the volume concentration of the
powder, particle diameter and the refractive index difference
between the UV-curable solution and the powder [28], [36].

In this framework, while the introduction of solid particles
seems themost logical route to follow in order to produce LIB
components, experiments are significantly limited due to the
high viscosity of the composite resin as well as the consider-
ably lower curing depth compared to traditional UV-curable
resin containing only polymeric matrix and photoinitia-
tor [37], [38]. Nevertheless, loading of resin with solid parti-
cles of electroactive materials is possible and has lately been
considered for the preparation of other energy storage devices

FIGURE 4. (a) List of employed photoinitiators and their respective
specific wavelength [23]; (b) Schematic PEGDA photopolymerization
reaction [22]. TPO stands for diphenyl (2,4,6-trimethylbenzoyl)-phosphine
oxide.

such as supercapacitors and capacitors. Park et al. [39]
recently reported the preparation of a UV-curable composite
resin with silver nanowires. Using DLP, the authors were able
to print 3D hierarchical octet truss structure (Fig. 5b). After
performing pyrolysis on the structure, a silver 3D array was
obtained and used as a supercapacitor (Fig. 5c). Likewise,
Yang et al. [40] reported the elaboration of 3D-printed capac-
itors via DLP based on the incorporation of Ag/Pb(Zr,Ti)O3
filler particles (up to 18%vol) into the UV-curable polymer
resin. In this study however, the green part (name given to
the item immediately after the printing stage) was directly
subjected to electrochemical testing without performing any
additional thermal post-processes.

Based on these pioneering studies, no doubt that future
works will demonstrate the energy storage capability of
VPP printed LIB electrodes/ceramic electrolytes components
containing solid particles. As thoroughly detailed hereafter,
the electrochemical performances of the printed item can be
evaluated at two different stages: 1) on the green part (before
debinding and sintering steps); 2) on the sintered part (after
these two thermal post-processing steps).

A. GREEN STATE ITEMS
The main feature of the production of functional battery
components directly at the green state is that no thermal
post-processing is needed as part of the manufacturing stages.
The electrochemical properties of the printed green item can
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FIGURE 5. (a) Sintered alumina lattice structure [29]; (b) 3D printed octet
structure obtained from a composite resin loaded with silver nanowire;
(c) 3D printed octet structure after thermal post-processing [39].

be directly characterized after printing. Nevertheless, poor
battery performances (specific capacity, energy and power
density) are expected at this stage due to the presence of
a high quantity of non-electroactive polymer matrix, acting
as dead material, and the low porosity of the printed item.
Printed electrodes are thus expected to exhibit low electri-
cal conductivities as well as poor electrolyte impregnation,
both of which will result in poor specific capacity during
cycling, even at low current densities. Printed current col-
lectors at the green state would also exhibit low electronic
conductivity for the same reasons stated before. It has been
previously demonstrated that the printing of infill patterns,
or of lattice electrodes with open porosity, could enhance
the electrodes performance at the green state by increasing
the available electroactive surface area and the liquid elec-
trolyte impregnation [41]. Another possibility would be to
add a water-soluble salt into the resin that would be removed
after printing simply by soaking the printed green item in
a solution, thus creating an intentional porosity. It is worth
mentioning that maintaining the mechanical strength of the
printed electrodes and collector is a critical feature to provide
robust battery parts. The investigation of conductive parts
in the green state could provide sturdy structures capable
of yielding superior mechanical properties than their sin-
tered counterparts (which tend to be brittle as the strength
is only conferred by the consolidation of the electroactive
material).

As the printability of the complete battery in one sin-
gle print (or ‘‘one-shot’’) via VPP still remains one of the
main targets to achieve, it is important to note that having
composite resins with the same polymeric matrix would
improve the adherence between the various layers and com-
ponents (electrodes, current collectors, electrolyte) in the
green state. While multi-material printing options [42]–[44]
had been widely commercialized for material extrusion [2],
[45], or inkjet additive manufacturing processes, their coun-
terparts for VPP are still scarce as only few attempts at
the laboratory scale have been carried out over the last
years. These attempts have generally resulted in an expo-
nential decrease in the production rate. Inamdar et al. [46]
modified a commercial SLA system and implemented the

FIGURE 6. (a) Multi-material SLA option involving a rotating vat carousel
system [47]; (b) 3D printed ‘‘rook’’ and model (inset) using a
multi-material SLA option [47]; (c) Single-material fabrication of ‘‘king’’
chess piece via micro-SLA [48]; (d) 3D printed ‘‘rook’’ and model (inset)
using a multi-material micro-SLA option [48].

use of a rotating vat carousel system (including 4 different
tanks – Fig. 6a) with a resolution of 20 µm on the z-
axis. The same group later introduced more details on the
construction and programming steps during operation [47].
Using commercial resins, several multi-material complex
‘‘chess rook’’ parts were produced via SLA (Fig. 6b). The
development of multi-material micro-SLA was further inves-
tigated by Choi et al. [48], by creating a system based
on a syringe pump that controlled the dispensing of the
material into a single build vat. Multi-material items were
successfully produced using three different resin systems
(Fig. 6c and 6d). Although the process included man-
ual intervention for changing the materials and rinsing the
parts, the combination of different materials was efficiently
demonstrated both within and across layers. More recently,
Khatri et al. [49] reported the development of a versatile
multi-material DLP system allowing printing of UV-curable
resins from three different vats. In this study, one vat was
filled with isopropanol solvent to ensure computer-controlled
rinsing of the printed item before switching between
materials.

These pioneering results on multi-material VPP had been
achieved by employing classical resins formulation (only
polymer matrix and photoinitiator). No doubt that future
years will witness the emergence of multi-material VPP
of composite materials. Such a milestone would definitely
revolutionize the additive manufacturing field and pave the
way towards printability of complete functional devices
for diverse applications including complete energy storage
devices and other electronics. Electrochemical characteriza-
tion of a complete battery that would be obtained through a
VPP multi-material option is certainly envisioned.

B. SINTERED ITEMS
While the introduction of additional thermal post-processing
steps is challenging, the main motivation for sintering printed
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battery components is the improved electrochemical proper-
ties in comparison with the green state counterparts. In this
case the polymer matrix is removed, leaving the resulting
item free of ‘‘dead material’’. As a consequence, a high
degree of porosity is left and the item is constituted mainly
from electroactive material. This porosity can be filled with
a liquid electrolyte, which would result in an accessible
route for the lithium ions. Upon cycling, sintered electrodes
will exhibit greater specific capacity, capacity retention over
time, energy and power density, in comparison with green
state items. Since battery performances are also associated
with the electronic conductivity, the presence of pure poorly
conductive electroactive materials such as LiFePO4, LiCoO2
or Li4Ti5O12 must be coupled with the introduction of con-
ductive carbonaceous materials. The sintering of 3D printed
ceramic electrolytes and current collectors is expected to
considerably increase the ionic and electronic conductivities,
respectively, but at the expense of the mechanical perfor-
mance. The shrinkage occurring during the sintering of a
printed item with a simple geometry can be estimated with
a scaling law, but is difficult to predict for non-uniform
geometries where anisotropic shrinkage can occur. In this
context, the resulting shape-conformable battery, originally
designed to fit perfectly in the available space, might be com-
promised. Other issues such as delamination between layers
and eventual collapse of the printed piece can be avoided by
thoroughly investigating temperature rates and dwell times
during both debinding and sintering steps, for example with
the use of thermogravimetric analysis. The debinding is a
delicate process, the item can crack, blister, or damage, lead-
ing most of the times to structural collapse when following
an improperly designed thermal cycle. To circumvent these
issues, long heating cycles with controlled heating ramps are
often used.

Prior to performing any electrochemical characterization,
the production of a complete battery in one single print (green
part) using a multi-material VPP process could also be sub-
jected to thermal treatment to enhance the resulting perfor-
mance. An important stage resides in the ability of the printed
multi-material structure to maintain structural integrity from
the mechanical standpoint. Here, the debinding and sinter-
ing temperatures must be tuned depending on the polymeric
matrix and/or electroactive materials. Indeed, performing the
thermal treatment of a printed battery composed of several
different components (electrodes, electrolyte, current collec-
tors) in a single cycle is clearly a challenging task that is yet
to be overcome.

IV. VPP OF BATTERIES VIA ALTERNATIVE APPROACHES
While 3D printing LIB components from resins loaded with
solid electroactive particles has not yet been demonstrated,
the initial studies of 3D printed LIB components via laser and
projection VPP started to emerge from 2017 using alterna-
tive approaches: 1) 3D printing of a pure polymer scaffold
structure followed by the deposition or introduction of the
electroactive materials, 2) soluble components added to the

resin (no thermal treatment needed) for separator, gel or
solid polymer electrolyte printing, and 3) battery precursors
added to the resin and electroactive materials synthesized in
situ during the sintering step. A summary is displayed in
Table 2.

A. SCAFFOLD APPROACH
The initial approach for printing complex structures to
be employed as scaffolds for battery components was
reported by Cohen et al. [50]. The authors employed
thermoplastic material extrusion and vat photopolymeriza-
tion to produce complex 3D lattice structures from com-
mercial thermoplastic filaments and UV-curable resins,
respectively. On top of conductive scaffolds (polylactic acid-
graphene 92:8 wt.%) printed via thermoplastic material
extrusion, tri-layered arrangements of LiFePO4 as cath-
ode, LiAlO2-Polyethylene oxide or Li1+xAlyGe2−y(PO4)3-
Polyethylenimine membrane as separator, and Li4Ti5O12 as
anode, were built by electrophoretic deposition. The result-
ing micro-battery was reported to offer high reversible spe-
cific capacity and high pulse-power capability compared to
commercial planar thin-film batteries. As suggested by the
authors, similar work could be performed with higher resolu-
tion VPP processes.

Similarly, Zekoll et al. [51] prepared a hybrid electrolyte
composed of 3D micro-channels of Li1.4Al0.4Ge1.6(PO4)3
ceramic solid electrolyte and non-conducting polymers
(epoxy polymer and polypropylene). The porous poly-
mer framework was primarily achieved via 2PP (Fig. 7a)
whereas the remaining empty space was filled with the
Li1.4Al0.4Ge1.6(PO4)3 ceramic powder. Finally, the struc-
ture was placed in a furnace to eliminate the polymer
matrix and perform sintering of the Li1.4Al0.4Ge1.6(PO4)3
3D arrangement. Cubic, diamond-shaped and gyroidal micro-
architectures were produced. Higher performances were
found with the gyroid Li1.4Al0.4Ge1.6(PO4)3 structure prov-
ing an ionic conductivity of 1.6 × 10−4 S/cm at ambient
temperature.

B. SOLUBLE COMPONENTS APPROACH FOR SEPARATOR,
GEL, OR SOLID POLYMER ELECTROLYTE
The synthesis of resins to serve as separator, gel polymer
electrolyte, ionogel, solid polymer electrolyte after printing
has also been investigated [52]–[55]. This trend can be simply
justified by the easier resin formulation of these components
as the incorporation of solid particles is not required (in
comparison to the resin formulation for electrodes or ceramic
electrolytes, where solid fillers are often incorporated). Good
printability of the resin is therefore facilitated as no parti-
cle sedimentation occurs. Furthermore, the viscosity of the
resin can be tuned and delamination between printed layers
is not prone to occur. Moreover, it is worth emphasizing
that the resulting separator, gel or solid polymer electrolyte
green parts (obtained just after printing) do not require any
additional thermal post-process before undergoing traditional
battery assembly and cycling.
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FIGURE 7. (a) Template procedure used for the synthesis of structured
hybrid electrolytes [51], (b) and (c) SEM images of a 3D printed zigzag gel
polymer electrolyte structure [52], (d) images of 3D printed flower shape
gel electrolyte [53], and (e) preparation process of an all-solid-state
lithium metal batteries using an SLA 3D printed solid polymer electrolyte
spiral membrane [54].

For the first time in 2017, Chen et al. [52] reported the
elaboration of a gel polymer electrolyte by printing a mixture
(20/80 in vol%) of UV-curable resin with a 1M LiClO4 in
an ethylene carbonate/propylene carbonate (v/v 1/1) liquid
electrolyte using the µSLA process. The authors were able to
print a zig-zag membrane (Fig. 7b and 7c) exhibiting an ionic
conductivity of 4.8 × 10−3 S/cm at room temperature. Then,
the complete battery was assembled by filling both sides with
electrode slurries (gel polymer electrolyte-LiFePO4 and gel
polymer electrolyte-Li4Ti5O12) and adding an aluminum foil
as a current collector. The resulting micro-battery was gal-
vanostatically tested and exhibited a capacity of 1.4µAh/cm2

at a discharging current of 2 µA for two cycles according to
the authors.

Additional workwas reported by Rahman et al. [53] to tune
the mechanical properties and favor the thermal stability of
the resulting printed gel polymer electrolyte membrane. They
reported the preparation and printability of a UV-curable
poly(vinylidene fluoride) (PVDF)/N,N-dimethyl acrylamide
(DMAA)-based resin comprising LiCl as a lithium salt and
ethylene glycol (EG) as solvent (Fig. 7d). An ionic con-
ductivity as high as 6.5 × 10−4 S/cm was achieved at
room temperature for the optimized membrane composition
(PVDF/DMAA/LiCl/EG wt.% 5/45/5/45).

Based on a similar approach, Zehbe et al. [55] demon-
strated that laser VPP can produce complex ionogels struc-
tures. In this study, the authors prepared resins composed
of sulfonate-based ionic liquids (80 wt.%) (1-methyl-3-
(4-sulfobutyl)imidazolium para-toluenesulfonate, 1-methyl-
1-butylpiperidiniumsulfonate para-toluenesulfonate and
1-methyl-3-(4-sulfobutyl) imidazolium methylsulfonate)
mixed with a commercial UV-curable resin (20 wt.%). Upon

printing, the ionogels exhibited ionic conductivities up to
0.7 × 10−4 S/cm and 3.4 × 10−3 S/cm at room temperature
and at 90 ◦C, respectively. The resulting membranes were
shown to be mechanically robust and thermally stable up to
200 ◦C.
Focused on the development of a solid polymer electrolyte

via VPP, He et al. [54] prepared a PEGDA-based resin con-
taining phenylbis(2,4,6-trimethylbenzoyl)-phosphine oxide
as photoinitiator and lithium bis(trifluoromethanesulfonyl)
imide (LiTFSI) as lithium salt. A 3D-printed archimedean
spiral-shaped solid polymer electrolyte (Fig. 7e) exhibiting
an ionic conductivity of 3.7 × 10−4 S/cm at 25 ◦C was
obtained, andwas later galvanostatically tested in an all-solid-
state lithium metal battery configuration (Li|3D-solid poly-
mer electrolyte |LiFePO4). A capacity value of 166 mAh/g
at a current density of 0.1C at 50◦C and a capacity reten-
tion of 77% after 250 cycles was reported. The spiral-
shaped solid polymer electrolyte was shown to greatly rein-
force interfacial adhesion. A similar VPP approach could
be undoubtedly transposed to other methacrylate-based solid
polymer electrolytes, such as the methyl acrylate function-
alized poly(D,L-Lactide)/poly(ethylene glycol) methyl ether
methacrylate with LiTFSI as lithium salt and Irgacure 1173 as
photoinitiator, proposed by Zaheer et al. [56]. In this study,
the authors obtained a 2D film after the UV illumination step,
but 3D complex geometries could theoretically be produced
via VPP.

C. PRECURSOR APPROACH: IN SITU SYNTHESIS OF THE
ELECTROACTIVE MATERIAL UPON THERMAL TREATMENT
With a view to circumvent the increased resin viscosity asso-
ciated with the introduction of solid particles, alternatively,
3D printing of electrodes can be achieved by introducing
soluble electroactive precursors into the resin and obtaining
the electroactive material upon the sintering step. The clear
advantage of this approach is that the precursor salts are
mixed at the molecular level thanks to their solubility in
the resin, and therefore do not promote UV light-scattering
during 3D printing. The photopolymerization process is
therefore more efficient and accurate compared to the pho-
tocuring of conventional powder-loaded resins. After print-
ing, the green part must endure the thermal post-processing
steps where the in situ synthesis of the electroactive material
or ceramic particles occurs, to form the final self-standing
item.

This approach has been optimized over the years to
obtain ceramics for all kinds of applications [57]. An exam-
ple is the use of preceramic polymers such as polysilox-
anes or polycarboxiloxanes, that upon thermal treatment
above or at 1100◦C produces SiC, SiCN, or SiOC ceramics
[58-60]. Similarly, Moore et al. [61] recently demonstrated
the in situ synthesis of 3D structures based on boro-phospho-
silicate glasses (SiO2–B2O3–P2O5) from a resin composed
of poly(diethoxysiloxane), triethyl phosphate and trimethyl
borate as soluble precursors for silicon, phosphorus and boron
oxides, respectively (Fig. 8). Another example is the synthesis
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FIGURE 8. Different stages of the production of a
SiO2–B2O3–P2O5 gyroid glass printed via DLP [61].

of ultralight and ultra-strong ZrOC structures upon thermal
treatment at 1200 ◦C of a DLP-printed structure (Fig. 9a).
The resin consisted of a mixture of zirconium n-propoxide
and an acrylate-based resin [62]. These examples, among oth-
ers [63], [64], are a testament of the potential of electroactive
oxides to be obtained following this approach.

Frequently encountered problems after sintering classical
ceramic materials are non-homogeneous shrinkage, heavy
mass loss, poor densification, cracking, weak mechanical
performance, and undesirable surface roughness [57]. For
battery materials, challenges are expected in every step of the
manufacturing process. Among the expected challenges are:
determining suitable precursor compounds and stoichiome-
tries, obtaining rheological properties of the precursor resin
that allow 3D printing of self-standing structures, and find-
ing appropriate thermal post-processing conditions for the
synthesis of battery materials and the elimination of non-
electroactive components.

Specifically focused on LIB, Yee et al. [65] reported the
synthesis of LiCoO2 via projection VPP. In this case, an aque-
ous PEGDA-based resin was loaded with Co(NO3)2.6H2O
and LiNO3 in stoichiometric ratios, from which a hydro-
gel was printed and calcinated at 700 ◦C (Fig. 9b and 9c).
SEM-energy dispersive X-ray analysis demonstrated that 7.5
atomic% of foreign elements (C, Na, P, Al, S and Si) were
left after the calcination process, but the authors stated that
this amount can be reduced by better controlling the thermal
post-processing conditions. From this 3D structure an initial
capacity of 121 mAh/g (theoretical capacity of 140 mAh/g)
at C/40 in half-cell versus lithium was obtained. The capacity
retention over 100 cycles at C/10 was shown to be 76%.
Capacity loss can be explained by the large ohmic impedance
due to the electrode thickness, lack of conductive additives,
and progressive structural collapse upon cycling.

In regular ceramics, any kind of porosity must be avoided
because its presence can lead to cracking during thermal post-
processing. In contrast, 3D printed electrodes require a cer-
tain micro-porosity, so that adequate electrolyte impregnation
is allowed. To address this issue, Yee et al. [65] worked on
the tuning ratio of PEGDA-to-LiCoO2, and found that by
increasing the lithium precursor, it was possible to increase
the micro-porosity without excessively increasing the Ohmic
impedance. Two other methods to promote micro-porosity

FIGURE 9. (a) Precursor approach preparation scheme [62]; (b) Schematic
of the sintering of the 3D Li+/Co2+ hydrogel to obtain the 3D LCO
structure [65]; (c) Optical images of the 3D Li+/Co2+ hydrogel and LCO
structures [65]; (d) XRD patterns and optical images (inset) of the green
and brown parts to demonstrate phase change after
pyrolysis [66].

are also mentioned. The first is to increase the surface area-
to-volume ratio, in order to evacuate in a controlled manner
the thermal decomposition gases. The second is to reduce the
formation rate of decomposition gases through a combined
temperature and vacuum protocol.

On a similar note, Saccone et al. [66] recently published
the production of a robust and expansion-tolerant Li2S-C
positive electrode for Li-sulfur batteries. Li2S-Cwas obtained
from the pyrolysis at 800 ◦C of 3D printed electrodes via
projection VPP (Fig. 9d) from an acrylate-based UV-curable
resin containing Li2SO4.H2O and surfactants. Surprisingly,
the structure presented promising first discharge capacity
of 310 mAh/g at C/20 and a retention of 80% after 100 cycles
when tested in half-cell configuration versus lithium. It is
worth noting that these pioneering studies [65, 66], cycled
independent 3D electrodes against a lithium foil (planar
structure), resulting in 2.5D batteries [67], as the lithium-
ion diffusion is relegated only to two dimensions. In all,
these promising efforts demonstrated that VPP of precursor
UV-curable resins for battery applications is achievable and
highlighted the potential to manufacture 3D designs that were
previously thought impossible.

Another important feature to consider when designing bat-
tery architectures is the layer resolution. Conventional VPP
machines can go as low as few micrometers with optimized
printing parameters (exposure time and brightness). Alter-
natively, 2PP, the highest-resolution additive manufacturing
technology currently, could be used to reach details in the
nanoscale. At the present time, there are no examples of
battery 3D printing via 2PP. However, 2PP printing of prece-
ramic resins followed by in situ synthesis has been reported
for other applications [68]–[72]. Brigo et al. [68] obtained
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FIGURE 10. (a) Two magnifications of an octet lattice structure printed via
2PP using a resin containing nickel precursors. (b) The same nickel lattice
with nanoscale features obtained after sintering [71].

dense SiOC structures with height of 100 µm and 450 nm
features after calcination at 1000 ◦C of the 2PP printed
structures. The precursor resin was a commercial acrylate
siloxane loaded with bis(dimethylamino)benzophenone as
a radical initiator [68]. Similarly, Greer’s group printed
zinc oxide architectures from a PEGDA-based resin loaded
with zinc nitrate hexahydrate [70] and nickel lattices
from an acrylic-based resin containing nickel acrylate
(Fig. 10) [71]. These works pave the way towards the fab-
rication of ceramic electrode and electrolyte 3D structures
via 2PP.

V. CONCLUSION
3D printing techniques allow the development of energy
storage devices such as LIB based on a layer-by-layer
material deposition, offering the possibility to manufacture
shape-conformable structures with intricate 3D geometries
to enhance the power performance, while reducing elec-
trochemically inactive weight and volume. VPP has the
potential to revolutionize the fabrication of batteries based
on the improved spatial resolution (main advantage) com-
pared to other additive manufacturing subcategories such
as material extrusion. Although VPP has not been exten-
sively used to fabricate batteries for now, the demand for
shape-conformable and high-power devices makes this topic
particularly promising. The work on ceramic resin formula-
tion and printing that has been previously reported for other
applications such as dentistry or electronics, can certainly
be transposed to batteries. An important research threshold
still involves the composite resin development through the
introduction of solid electroactive particles or by employing
a precursor approach. The impact of the added fillers on the
viscosity of the resin and the light path are the main two
key-points that must be studied thoroughly. Finally, study-
ing the impact of the printing parameters as well as the
development and optimization of multi-material printers will
undoubtedly pave the way towards the manufacturing of a
complete high-resolution shape conformable 3D battery via
VPP.
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