Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Article dans une revue

Artificial Intelligence Investigation of NMC Cathode Manufacturing Parameters Interdependencies

Abstract : The number of parameters involved in lithium-ion battery electrode manufacturing and the complexity of the physicochemical interactions throughout the associated processes make highly complex to find interdependencies between the final electrode characteristics and the fabrication parameters. In this work, we have analyzed three different machine-learning algorithms (decision tree, support vector machine, and deep neural network) in order to find the best one to uncover the interdependencies between the slurry manufacturing parameters and the final properties of NMC-based cathodes. The results revealed that the support vector machine method shows high accuracy and the possibility to predict the influence of manufacturing parameters on themass loading and porosity of the electrodes in a straightforward graphical way. Furthermore, we report for the first time this new approach and a case study that, by comparing the trends observed experimentally and from the model, demonstrates the validity and the quality of the proposed approach.
Type de document :
Article dans une revue
Domaine :
Liste complète des métadonnées
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : mercredi 16 mars 2022 - 18:18:01
Dernière modification le : lundi 7 novembre 2022 - 17:24:33

Lien texte intégral



Ricardo Pinto Cunha, Teo Lombardo, Emiliano N. Primo, Alejandro A. Franco. Artificial Intelligence Investigation of NMC Cathode Manufacturing Parameters Interdependencies. Batteries & Supercaps, 2020, 3 (1), pp.60-67. ⟨10.1002/batt.201900135⟩. ⟨hal-03611038⟩



Consultations de la notice