Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Dynamical properties of a nonlinear Kuramoto-Sivashinsky growth equation

Abstract : The conserved Kuramoto-Sivashinsky equation can be considered as the one- and twodimensional evolution equation for amorphous thin film growth. The role of the nonlinear term Dojruj2THORN and the properties of the solutions are investigated analytically and numerically. Analytical results of wavelength and amplitude are provided. Numerical simulations of this equation are presented, showing the roughening and coarsening of the surface pattern and the evolution of the surface morphology over time for different parameter values in one- and two-dimensions. (C)2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license ( licenses/by-nc-nd/4.0/).
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : lundi 28 mars 2022 - 10:01:23
Dernière modification le : vendredi 16 septembre 2022 - 16:46:24

Lien texte intégral




Mohammed Benlahsen, Gabriella Bognar, Zoltan Csati, Mohammed Guedda, Krisztian Hriczo. Dynamical properties of a nonlinear Kuramoto-Sivashinsky growth equation. Alexandria Engineering Journal, Elsevier, 2021, 60 (3), pp.3419-3427. ⟨10.1016/j.aej.2021.02.003⟩. ⟨hal-03621254⟩



Consultations de la notice