Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

AN EFFICIENT IDENTIFICATION OF RED BLOOD CELL EQUILIBRIUM SHAPE USING NEURAL NETWORKS

Abstract : This work of applied mathematics with interfaces in bio-physics focuses on the shape identification and numerical modelisation of a single red blood cell shape. The purpose of this work is to provide a quantitative method for interpreting experimental observations of the red blood cell shape under microscopy. In this paper we give a new formulation based on classical theory of geometric shape minimization which assumes that the curvature energy with additional constraints controls the shape of the red blood cell. To minimize this energy under volume and area constraints, we propose a new hybrid algorithm which combines Particle Swarm Optimization (PSO), Gravitational Search (GSA) and Neural Network Algorithm (NNA). The results obtained using this new algorithm agree well with the experimental results given by Evans et al. (8) especially for sphered and biconcave shapes.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03621255
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : lundi 28 mars 2022 - 10:01:26
Dernière modification le : vendredi 16 septembre 2022 - 16:52:26

Identifiants

Collections

Citation

H. Fahim, O. W. Sawadogo, N. Alaa, Mohammed Guedda. AN EFFICIENT IDENTIFICATION OF RED BLOOD CELL EQUILIBRIUM SHAPE USING NEURAL NETWORKS. Eurasian Journal of Mathematical and Computer Applications, Eurasian National University, Kazakhstan (Nur-Sultan), 2021, 9 (2), pp.39-56. ⟨10.32523/2306-6172-2021-9-2-39-56⟩. ⟨hal-03621255⟩

Partager

Métriques

Consultations de la notice

4