Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Lattice extensions of Hecke algebras

Abstract : We investigate the extensions of the Hecke algebras of finite (complex) reflection groups by lattices of reflection subgroups that we introduced, for some of them, in our previous work on the Yokonuma-Hecke algebras and their connections with Artin groups. When the Hecke algebra is attached to the symmetric group, and the lattice contains all reflection subgroups, then these algebras are the diagram algebras of braids and ties of Aicardi and Juyumaya. We prove a structure theorem for these algebras, generalizing a result of Espinoza and Ryom-Hansen from the case of the symmetric group to the general case. We prove that these algebras are symmetric algebras at least when W is a Coxeter group, and in general under the trace conjecture of Broue, Malle and Michel. (C) 2018 Elsevier Inc. All rights reserved.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03621314
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : lundi 28 mars 2022 - 10:19:21
Dernière modification le : mercredi 14 septembre 2022 - 17:06:31

Lien texte intégral

Identifiants

Collections

Citation

Ivan Marin. Lattice extensions of Hecke algebras. Journal of Algebra, Elsevier, 2018, 503, pp.104-120. ⟨10.1016/j.jalgebra.2018.02.003⟩. ⟨hal-03621314⟩

Partager

Métriques

Consultations de la notice

2