Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Bernstein-Moser-type results for nonlocal minimal graphs

Abstract : We prove a flatness result for entire nonlocal minimal graphs having some partial derivatives bounded from either above or below. This result generalizes fractional versions of classical theorems due to Bernstein and Moser. Our arguments rely on a general splitting result for blow-downs of nonlocal minimal graphs. Employing similar ideas, we establish that entire nonlocal minimal graphs bounded on one side by a cone are affine. Moreover, we show that entire graphs having constant nonlocal mean curvature are minimal, thus extending a celebrated result of Chern on classical CMC graphs.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03621402
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : lundi 28 mars 2022 - 10:56:52
Dernière modification le : mercredi 14 septembre 2022 - 18:22:26

Identifiants

  • HAL Id : hal-03621402, version 1

Collections

Citation

Alberto Farina, Luca Lombardini, Matteo Cozzi. Bernstein-Moser-type results for nonlocal minimal graphs. Communications in Analysis and Geometry, International Press, 2021, 29 (4), pp.761-777. ⟨hal-03621402⟩

Partager

Métriques

Consultations de la notice

3