Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A three-dimensional symmetry result for a phase transition equation in the genuinely nonlocal regime

Abstract : We consider bounded solutions of the nonlocal Allen-Cahn equation (-Delta)(s) u = u - u(3) in R-3, under the monotonicity condition. partial derivative(x3) u > 0 and in the genuinely nonlocal regime in which s is an element of (0, 1/2). Under the limit assumptions lim(xn) (->) (-infinity) u(x', x(n)) = - 1 and lim(xn) (->) (+infinity) u(x', x(n)) =1, it has been recently shown in Dipierro et al. (Improvement of flatness for nonlocal phase transitions, 2016) that u is necessarily 1D, i.e. it depends only on one Euclidean variable. The goal of this paper is to obtain a similar result without assuming such limit conditions. This type of results can be seen as nonlocal counterparts of the celebrated conjecture formulated by De Giorgi (Proceedings of the international meeting on recent methods in nonlinear analysis (Rome, 1978), Pitagora, Bologna, pp 131-188, 1979).
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03621413
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : lundi 28 mars 2022 - 10:57:03
Dernière modification le : mercredi 14 septembre 2022 - 18:26:27

Lien texte intégral

Identifiants

Collections

Citation

Serena Dipierro, Alberto Farina, Enrico Valdinoci. A three-dimensional symmetry result for a phase transition equation in the genuinely nonlocal regime. Calculus of Variations and Partial Differential Equations, Springer Verlag, 2018, 57 (1), ⟨10.1007/s00526-017-1295-5⟩. ⟨hal-03621413⟩

Partager

Métriques

Consultations de la notice

4