Arrêt de service programmé du vendredi 10 juin 16h jusqu’au lundi 13 juin 9h. Pour en savoir plus
Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Regularity and rigidity theorems for a class of anisotropic nonlocal operators

Abstract : We consider here operators which are sum of (possibly) fractional derivatives, with (possibly different) order. The main constructive assumption is that the operator is of order 2 in one variable. By constructing an explicit barrier, we prove a Lipschitz estimate which controls the oscillation of the solutions in such direction with respect to the oscillation of the nonlinearity in the same direction. As a consequence, we obtain a rigidity result that, roughly speaking, states that if the nonlinearity is independent of a coordinate direction, then so is any global solution (provided that the solution does not grow too much at infinity). A Liouville type result then follows as a byproduct.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03621418
Contributeur : Louise Dessaivre Connectez-vous pour contacter le contributeur
Soumis le : lundi 28 mars 2022 - 10:57:07
Dernière modification le : mardi 29 mars 2022 - 03:58:28

Lien texte intégral

Identifiants

Collections

Citation

Alberto Farina, Enrico Valdinoci. Regularity and rigidity theorems for a class of anisotropic nonlocal operators. Manuscripta Mathematica, 2017, 153 (1-2), pp.53-70. ⟨10.1007/s00229-016-0875-6⟩. ⟨hal-03621418⟩

Partager

Métriques

Consultations de la notice

3