Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Dual braid monoids, Mikado braids and positivity in Hecke algebras

Abstract : We study the rational permutation braids, that is the elements of an Artin-Tits group of spherical type which can be written where x and y are prefixes of the Garside element of the braid monoid. We give a geometric characterization of these braids in type and and then show that in spherical types different from the simple elements of the dual braid monoid (for arbitrary choice of Coxeter element) embedded in the braid group are rational permutation braids (we conjecture this to hold also in type ). This property implies positivity properties of the polynomials arising in the linear expansion of their images in the Iwahori-Hecke algebra when expressed in the Kazhdan-Lusztig basis. In type , it implies positivity properties of their images in the Temperley-Lieb algebra when expressed in the diagram basis.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03621938
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : lundi 28 mars 2022 - 16:02:28
Dernière modification le : mercredi 14 septembre 2022 - 17:38:30

Lien texte intégral

Identifiants

Citation

Francois Digne, Thomas Gobet. Dual braid monoids, Mikado braids and positivity in Hecke algebras. Mathematische Zeitschrift, Springer, 2017, 285 (1-2), pp.215-238. ⟨10.1007/s00209-016-1704-z⟩. ⟨hal-03621938⟩

Partager

Métriques

Consultations de la notice

13