On mu-Dvoretzky random covering of the circle - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Bernoulli Année : 2021

On mu-Dvoretzky random covering of the circle

(1) ,
1

Résumé

In this paper, we study the Dvoretzky covering problem with non-uniformly distributed centers. When the probability law of the centers is absolutely continuous w.r.t. Lebesgue measure and satisfies a regularity condition on the set of essential infimum points, we give a necessary and sufficient condition for covering the circle. When the lengths of covering intervals are of the form l(n) = c/n, we give a necessary and sufficient condition for covering the circle, without imposing any regularity on the density function.
Fichier non déposé

Dates et versions

hal-03621993 , version 1 (28-03-2022)

Identifiants

Citer

Aihua Fan, Davit Karagulyan. On mu-Dvoretzky random covering of the circle. Bernoulli, 2021, 27 (2), pp.1270-1290. ⟨10.3150/20-BEJ1273⟩. ⟨hal-03621993⟩
7 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More