Arrêt de service programmé du vendredi 10 juin 16h jusqu’au lundi 13 juin 9h. Pour en savoir plus
Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Almost everywhere convergence of ergodic series

Abstract : We consider ergodic series of the form Sigma(infinity)(n=0) a(n) f(T-n x), where f is an integrable function with zero mean value with respect to a T-invariant measure mu. Under certain conditions on the dynamical system T, the invariant measure mu and the function f, we prove that the series converges mu-almost everywhere if and only if Sigma(infinity)(n=0) vertical bar a(n)vertical bar(2) < infinity, and that in this case the sum of the convergent series is exponentially integrable and satisfies a Khintchine-type inequality. We also prove that the system \f o T-n\ is a Riesz system if and only if the spectral measure of f is absolutely continuous with respect to the Lebesgue measure and the Radon-Nikodym derivative is bounded from above as well as from below by a constant. We check the conditions for Gibbs measures mu relative to hyperbolic dynamics T and for Holder functions f. An application is given to the study of differentiability of the Weierstrass-type functions Sigma(infinity)(n=0) a(n) f(3(n) x).
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03622007
Contributeur : Louise Dessaivre Connectez-vous pour contacter le contributeur
Soumis le : lundi 28 mars 2022 - 16:23:24
Dernière modification le : mardi 29 mars 2022 - 03:58:28

Lien texte intégral

Identifiants

Collections

Citation

Aihua Fan. Almost everywhere convergence of ergodic series. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 (2), pp.490-511. ⟨10.1017/etds.2015.58⟩. ⟨hal-03622007⟩

Partager

Métriques

Consultations de la notice

4