RADIAL POSITIVE SOLUTIONS FOR p-LAPLACIAN SUPERCRITICAL NEUMANN PROBLEMS - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Bruno Pini Mathematical Analysis Seminar Année : 2017

RADIAL POSITIVE SOLUTIONS FOR p-LAPLACIAN SUPERCRITICAL NEUMANN PROBLEMS

, (1)
1

Résumé

This paper deals with existence and multiplicity of positive solutions for a quasilinear problem with Neumann boundary conditions. The problem is set in a ball and admits at least one constant non-zero solution; moreover, it involves a nonlinearity that can be supercritical in the sense of Sobolev embeddings. The main tools used are variational techniques and the shooting method for ODE's. These results are contained in [6,3].
Fichier non déposé

Dates et versions

hal-03623066 , version 1 (29-03-2022)

Identifiants

  • HAL Id : hal-03623066 , version 1

Citer

F. Colasuonno, Benedetta Noris. RADIAL POSITIVE SOLUTIONS FOR p-LAPLACIAN SUPERCRITICAL NEUMANN PROBLEMS. Bruno Pini Mathematical Analysis Seminar, 2017, 1, pp.55-72. ⟨hal-03623066⟩
3 Consultations
0 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More