Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Regression Models With Graph-Regularization Learning Algorithms for Accurate Fault Location in Smart Grids

Abstract : This article focuses on the design of a hierarchical framework for locating faults in smart grids by resorting to only modal components of three-phase voltage measurements. The search space for identifying the faulty lines is first limited to the impacted regions by the fault, which is determined through an improved graph analytic-based algorithm by contributing the system topology and attribute affinities. The faulty lines within the faulty regions are then identified by employing a heuristic index extracted from the wavelet multiresolution analysis of corresponding modal components. The fault location on the faulty lines is finally estimated by the regression analysis of two novel graph regularization-based learning models. This fault location proposal has been evaluated over numerous simulated scenarios on the IEEE 39-bus system with the measurements subject to sampling rate, fault resistance, and noise issues. The attained results validate the efficiency of the proposed framework.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03629885
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : lundi 4 avril 2022 - 16:18:45
Dernière modification le : vendredi 5 août 2022 - 11:21:47

Identifiants

Collections

Citation

Hossein Hassani, Roozbeh Razavi-Far, Mehrdad Saif, Gerard-Andre Capolino. Regression Models With Graph-Regularization Learning Algorithms for Accurate Fault Location in Smart Grids. IEEE Systems Journal, IEEE, 2021, 15 (2), pp.2012-2023. ⟨10.1109/JSYST.2020.3001932⟩. ⟨hal-03629885⟩

Partager

Métriques

Consultations de la notice

2