Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Predictive Management Algorithm for Controlling PV-Battery Off-Grid Energy System

Abstract : This paper introduces an energy management strategy for an off-grid hybrid energy system. The hybrid system consists of a photovoltaic (PV) module, a LiFePO4 battery pack coupled with a Battery Management System (BMS), a hybrid solar inverter, and a load management control unit. A Long Short-Term Memory network (LSTM)-based forecasting strategy is implemented to predict the available PV and battery power. The learning data are extracted from an African country with a tropical climate, which is very suitable for PV power applications. Using LSTM as a prediction method significantly increases the efficiency of the forecasting. The main objective of the proposed strategy is to control the different loads according to the forecasted energy availability of the system and the forecasted battery state of charge (SOC). The proposed management algorithm and the system are tested using Matlab/Simulink software. A comparative study demonstrates that the reduction in the energy deficit of the system is approximately 53% compared to the system without load management. In addition to this, the reliability of the system is improved as the loss of power supply probability (LPSP) decreases from 5% to 3%.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03631275
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : mardi 5 avril 2022 - 15:18:32
Dernière modification le : mercredi 31 août 2022 - 10:24:39

Lien texte intégral

Identifiants

Collections

Citation

Tareq Alnejaili, Sami Labdai, Larbi Chrifi-Alaoui. Predictive Management Algorithm for Controlling PV-Battery Off-Grid Energy System. Sensors, MDPI, 2021, 21 (19), ⟨10.3390/s21196427⟩. ⟨hal-03631275⟩

Partager

Métriques

Consultations de la notice

4