Arrêt de service programmé du vendredi 10 juin 16h jusqu’au lundi 13 juin 9h. Pour en savoir plus
Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A Topological Neural-Based Scheme for Classification of Faults in Induction Machines

Abstract : This article presents a data-driven approach for the classification of faults in induction machines. The designed scheme involves newly engineered features extracted from the line current signals, which provides an improved fault discrimination. For this purpose, a topological-based fast projection technique (curvilinear component analysis) is used as a tool to reduce the dimensionality of the data and interpret the feature behavior. Consequently, a shallow convolutional neural network has been designed to classify the three-phase stator current signals. Experimental tests at different operating conditions have assessed the procedure, confirming its effectiveness and suitability for online and real-time diagnostics.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Louise Dessaivre Connectez-vous pour contacter le contributeur
Soumis le : mardi 5 avril 2022 - 16:25:08
Dernière modification le : mercredi 13 avril 2022 - 08:48:12




Rahul R. Kumar, Giansalvo Cirrincione, Maurizio Cirrincione, Andrea Tortella, Mauro Andriollo. A Topological Neural-Based Scheme for Classification of Faults in Induction Machines. IEEE Transactions on Industry Applications, Institute of Electrical and Electronics Engineers, 2021, 57 (1), pp.272-283. ⟨10.1109/TIA.2020.3032944⟩. ⟨hal-03631431⟩



Consultations de la notice