DNA Microarray Classification: Evolutionary Optimization of Neural Network Hyper-parameters - Archive ouverte HAL Accéder directement au contenu
Chapitre D'ouvrage Année : 2020

DNA Microarray Classification: Evolutionary Optimization of Neural Network Hyper-parameters

(1) , , (2, 3) , (4) ,
1
2
3
4

Résumé

The analysis of complex systems, such as cancer resistance to drugs, requires flexible algorithms but also simple models, as they will be used by biologists in order to get insights on the underlying phenomenon. Exploiting the availability of the largest collection of patient-derived xenografts from metastatic colorectal cancer annotated for response to therapies, this manuscript aims to (i) forecast the response to treatments on human tissues using murine information; (ii) providing a trade-off between model accuracy and interpretability, evolving a shallow neural network using a genetic algorithm.
Fichier non déposé

Dates et versions

hal-03631433 , version 1 (05-04-2022)

Identifiants

Citer

Pietro Barbiero, Andrea Bertotti, Gabriele Ciravegna, Giansalvo Cirrincione, Elio Piccolo. DNA Microarray Classification: Evolutionary Optimization of Neural Network Hyper-parameters. Esposito, A and FaundezZanuy, M and Morabito, FC and Pasero, E. NEURAL APPROACHES TO DYNAMICS OF SIGNAL EXCHANGES, 151, pp.305-311, 2020, Smart Innovation, Systems and Technologies, 978-981-13-8950-4; 978-981-13-8949-8. ⟨10.1007/978-981-13-8950-4\_28⟩. ⟨hal-03631433⟩
3 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More