Arrêt de service programmé du vendredi 10 juin 16h jusqu’au lundi 13 juin 9h. Pour en savoir plus
Accéder directement au contenu Accéder directement à la navigation
Chapitre d'ouvrage

DNA Microarray Classification: Evolutionary Optimization of Neural Network Hyper-parameters

Abstract : The analysis of complex systems, such as cancer resistance to drugs, requires flexible algorithms but also simple models, as they will be used by biologists in order to get insights on the underlying phenomenon. Exploiting the availability of the largest collection of patient-derived xenografts from metastatic colorectal cancer annotated for response to therapies, this manuscript aims to (i) forecast the response to treatments on human tissues using murine information; (ii) providing a trade-off between model accuracy and interpretability, evolving a shallow neural network using a genetic algorithm.
Type de document :
Chapitre d'ouvrage
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03631433
Contributeur : Louise Dessaivre Connectez-vous pour contacter le contributeur
Soumis le : mardi 5 avril 2022 - 16:25:09
Dernière modification le : mercredi 6 avril 2022 - 03:13:48

Identifiants

Collections

Citation

Pietro Barbiero, Andrea Bertotti, Gabriele Ciravegna, Giansalvo Cirrincione, Elio Piccolo. DNA Microarray Classification: Evolutionary Optimization of Neural Network Hyper-parameters. Esposito, A and FaundezZanuy, M and Morabito, FC and Pasero, E. NEURAL APPROACHES TO DYNAMICS OF SIGNAL EXCHANGES, 151, pp.305-311, 2020, Smart Innovation, Systems and Technologies, 978-981-13-8950-4; 978-981-13-8949-8. ⟨10.1007/978-981-13-8950-4\_28⟩. ⟨hal-03631433⟩

Partager

Métriques

Consultations de la notice

2