Arrêt de service programmé du vendredi 10 juin 16h jusqu’au lundi 13 juin 9h. Pour en savoir plus
Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Analysis of Stator Faults in Induction Machines using Growing Curvilinear Component Analysis

Abstract : Fault detection of shorted turns in the stator windings of Induction Motors (IMs) is possible in a variety of ways. As current sensors are usually installed together with the IMs for control and protection purposes, using stator current for fault detection has become a common practice nowadays, as it is much cheaper than installing additional sensors. In this study, stator currents from the healthy and faulty IMs are obtained and analysed via MATLAB software. The current signatures from healthy and faulty IMs are conditioned using the inbuilt DSP module of the dSPACE prior to analysis using AI techniques. This paper presents a Growing Curvilinear Component Analysis (GCCA) neural network which is able to correctly identify anomalies in the IM and follow the evolution of the stator fault using its current signature, making on-line early fault detection possible.
Type de document :
Communication dans un congrès
Liste complète des métadonnées
Contributeur : Louise Dessaivre Connectez-vous pour contacter le contributeur
Soumis le : mardi 5 avril 2022 - 16:25:22
Dernière modification le : mercredi 6 avril 2022 - 03:00:16


  • HAL Id : hal-03631453, version 1



R. R. Kumar, V Randazzo, G. Cirrincione, M. Cirrincione, E. Pasero. Analysis of Stator Faults in Induction Machines using Growing Curvilinear Component Analysis. 2017 20TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), Aug 2017, Sydney, Australia. ⟨hal-03631453⟩



Consultations de la notice