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Poroelastic response of a functionally graded hollow cylinder
under an asymmetric loading condition

Abstract This paper aims to develop semi-analytical results of the poromechanical fields in a hollow cylinder
subjected to an asymmetric loading condition. The poroelastic properties of the hollow cylinder vary in the
radial direction. The heterogeneous hollow cylinder is approximated by a multilayer structure in which each
cylindrical layer is assumed to be homogeneous. The analytical results of the poromechanical field are first
established in the transformed Laplace space, and then the ones in time space are obtained by the inverse Laplace
transformation. They are perfectly in coherence with existent results in the literature that were developed for the
homogeneous and the heterogeneous cases at the steady state regime. Sensitivity analysis shows a significant
effect of the radial variations of the poroelastic properties on the response of the hollow cylinder.

Keywords Poroelastic - Functionally graded material - Hollow cylinder - Fluid diffusion - Asymmetric
loading
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u, U Displacement
p, P Pore pressure
., Z Fluid exchange
q, 0 Fluid flow rate
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Laplace’s transform of a certain variable x
Time
Laplace’s variable
and 6 Cylindrical coordinates
In-plane drained compressional stiffness
In-plane shear modulus
Biot’s modulus
Biot’s coefficient
Permeability
Diffusion coefficient
Number of layer
k and (k) Index and exponent stand for kth layer
in and out Indexes stand for the inner and outer faces of the whole hollow cylinder
11, b, Ki, K Modified Bessel functions of the first and second kinds
m1, my and m3 Coefficients defining the radial variations of the poroelastic properties
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1 Introduction

Mechanical behavior of a hollow cylinder is an important research subject because of a large variety of related
applications in many domains: petroleum wellbore drilling, tunnel excavation, cortical bone, aerospace, etc.
[1-3]. Analytical results for an elastic homogeneous hollow cylinder can be found in most of the mechanical
books. They can be obtained by solving the Navier’s equation that is a second-order differential equation
of the displacement. Analytical and semi-analytical results were also developed for the many more complex
problems: homogeneous poroelastic borehole [6], heterogeneous elastic hollow cylinder [7, 8], or thermoelastic
heterogeneous hollow cylinder at steady state regime [9, 10], just to cite a few. Recently, Nguyen-Sy et al. [11]
have developed semi-analytical results for the transient diffusion of fluid through a heterogeneous poroelastic
hollow cylinder subjected to a plane strain axisymmetric loading. However, the results for a functionally graded
poroelastic hollow cylinder subjected to a shear loading do not exist yet in the literature.

The numerical simulation can be considered for such problem. However, it is important to derive analyt-
ical or semi-analytical results to benchmark the numerical codes. Also, analytical results can be considered
for sensitivity/reliability tests of the related parameters (material properties, geometry, etc.) thanks to their
negligible simulation time compared to the numerical method.

This paper aims to provide semi-analytical results of a functionally graded poroelastic hollow cylinder
subjected to an asymmetric loading condition. It is organized as follows: first the theoretical basis of the model
is presented. Second, semi-analytical results in Laplace space are derived. They are validated against existing
results of simplified cases: a homogeneous borehole; and a heterogeneous case at the steady state fluid flow
regime. Third, a sensitivity analysis is presented to clarify the effect of the radial variation of the poroelastic
properties on the shearing response of the hollow cylinder. Concluding remark and Appendix 1 are given at
the end of the paper.

2 Theoretical basis
2.1 Governing equations

Let us consider a poroelastic functionally graded hollow cylinder in which the poroelastic properties vary
radially. A pure shear loading is applied on the inner boundary of the hollow cylinder as [6, 7]

Oin = — pocos28; Ty = posin26 (D)

where oj,, is the radial traction and 7;,, is the shear stress on the inner boundary of the hollow cylinder. The
poromechanical response obeys the Biot’s poroelastic theory [4, 12], and fluid flow is described by the Darcy’s
law. It is approximated by a multilayer cylinder in which each cylindrical shell is assumed to be homogeneous

(Fig. 1).
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Fig. 1 Multilayer hollow cylinder under a pure shear loading

The poroelastic constitutive law relates the radial, tangent and shear stresses a,(f), ae(g), r(g) the pore pressure

Dk, the fluid exchange ¢ and the radial, tangent and shear strains eﬁlﬁ), eg;), 8(,;) in the kth layer as [5]

o™ 4 bypy = He® — 2Gyel) )
o — o) =26, < (k) 85;)) o® = 26G4e® 3)
Pk = My (é“k - ka(k)) “)

where 5( ) is the volumetric strain in the kth layer that can be expressed in the plane strain condition as:

(k) = sy;) + eékg), the in-plane drained compressional stiffness and the in-plane shear modulus of the kth layer
are noted by Hj and Gy, respectively. The Biot’s modulus and the in-plane Biot’s coefficient are noted by M
and bg. The index k and the exponent (k) denote the properties and the poromechanical fields within the kth

layer.

The radial and tangent fluid flow rate q ) and q ) at any point in the kth cylindrical shell are related to the
pore pressure via the Darcy’s law as

dPk 1 9py
® — Pk o 1
qr k B 419 k r 89
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where ky is the permeability that is the ratio between the intrinsic permeability of the kth layer and the fluid
dynamic viscosity; r is the radial coordinate that is the distance from the considering point to the center of the
hollow cylinder. The combination of the Darcy’s law and the fluid mass conservation leads to the following
diffusion equation [6]
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where cy is the fluid diffusion coefficient of the kth layer that is related to its poroelastic properties as
Ky My Hy,
cx = Tk (7
Hy + My by

The radial, tangent and shear strains are related to the radial and tangent displacements u(k) and u(k) by
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Also, it will be useful to introduce a variable a) ) thatis a component of the rotation vector of the displace-

ment field [5]

(k) (k) (k)

a)gk) _ l duy N Uy 1 du, (10)
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The poroelastic coupling problem is not developed directly from the governing Egs. (2), (3), (4), (8) and
(9). It will be demonstrated in the following of the paper that it is more convenient to combine these relations
after the cosine and sinus transformations. Indeed, the complexity related to the tangent variable 6 can be
avoided by that technique.

2.2 Parameters
There are five hydro-mechanical properties for each layer: i, Hi, Gk, by and My. So, there are SN parameters

to fully describe the whole N-layers heterogeneous porous medium. In addition to the fluid diffusion coefficient
ck, some alternative poroelastic parameters will be also considered in this paper:

ZbG
ﬁk—xk\fak \/7 Lk (11)

where s is the Laplace transform variable.

2.3 Cosine and sinus transformations

The combination of Egs. (2) to (9) forms the complete governing equation system of the problem. They can
be simplified by considering the following cosinus and sinus transformations [6, 7]

p = Pcos20;q, = Q,co0s20;qg9 = Qpsin260 (12)
u, = U,c0820;ug = Uysin26 (13)
err = Ec0820; 899 = Eggcos20;e,9 = E,gsin20 (14)
Orr = 2prC0820; 099 = XppC0S20; 0,9 = ZyrgsSin26 (15)
and
&y, = Ecos20; E; = Zcos26; w, = Wsin26 (16)

where the index k and the exponent (k) that stand for kth layer were omitted to simplify the expressions. Using
these sinus and cosine transformations, the diffusion Eq. (6) can be simplified to
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The Darcy law becomes
P
o® = — Q(k) K — (18)
r

The relationship between the strains, the rotation coefficient and the displacements (Egs. (8) and (10)) can
be also simplified to
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and
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The stress balance condition and the poroelastic constitutive equations are transformed to
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2.4 The poromechanical fields in each cylindrical shell

Equations (2) to (9) can be combined to obtain a diffusion equation of Z; that can be transformed into a
differential equation of Zy in the Laplace transform space. The notation X stands for the Laplace transformation
of a certain variable x. It is convenient to define a vector of the solutions as

_k) _k)
(k) 75k k
Yk=[P [DRRBARTIESS ,,,2,9} (25)

where the exponent ¢ is for the transposition of a vector; the index k and the exponent (k) denote the mechanical

fields that are associated with the kth layer. The Laplace transformation of the pore pressure, fluid flow rate,

radial and tangent displacements and radial and shear stresses in the kth layer are noted by P, > Q(k) U ik), U ék),

—® —®

¥, and ¥, . The introduction of the vector Y is useful for the consideration of the boundary conditions
and the continuity conditions at the interface between the layers as will be detailed after. It can be expressed
in terms of a dot product between a 6 x 6 matrix Z;(r) and a vector of six constants that is defined by
Xk = [Ak, Bk, Ck, Dk, Ek, Fk]l as

Yi(r) =Tk (r). X (26)
where the matrix Z®)(r) is determined for each radial coordinate r in kth layer as
(&) K> (&) — My byr? — Mg 0 ]
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with
&k =ry/s/ck

and I1(§), Ir(§), K1(§) and K;(&) are the modified Bessel functions of the first and second kinds. The matrix
Tk (r) can be determined by using Eq. (27) for any point with radial coordinate r inside the kth layer with given
five poroelastic parameters that are the drained moduli Hj and Gy, the Biot’s parameters by and My, and the



permeability «i. The parameters S, 8k, 6x and the diffusion coefficient c; can be determined from the five
given poroelastic parameters by using Eqs. (11) and (7).

The constants Xy of the cylindrical layers can be determined by solving the boundary and the continuity
conditions. Once they are determined, the pore pressure, the radial and tangent displacements and the radial
and shear stresses in each cylindrical layer can be obtained by Eq. (26). The tangent stress in the kth layer can
be also calculated by Eq. (48) (see Appendix 1).

2.5 Determination of X

To completely determine the poromechanical fields in the whole heterogeneous medium that is composed of
N cylindrical layer, it is required to determine 6 N constants that are Ay, By, Cx, Dk, Ex and Fy with k from
1 to N. This can be done by solving a system of 6/N equations including the 6 boundary conditions at the
inner and outer faces of the medium and 6(N — 1) continuity conditions at (N — 1) interfaces between the
layers. In each of the inner and outer faces, there are three boundary conditions that are the hydraulic condition
(fluid pressure or fluid flow rate) and two mechanical conditions (radial and shear stresses or radial and tangent
displacements). Besides, the poroelastic fields at an interface between two neighbor cylindrical layers must
satisfy a system of six continuity conditions that can be combined in the following vector form: Y (r¢) = Y41
(rx) where the vector Y contains six components as defined by Eq. (25). This condition yields

[Te(re) —Ik+1<rk)][ X’fﬂ =0 (28)

where ry is the radial coordinate of the interface between a kth and (k + 1)th layers.

Considering for example a case with radial and shear stresses applied on the inner boundary of the hollow
cylinder as described by Eq. (1). The outer boundary is fixed in displacement. Pore pressure is nil on both
boundaries. These boundary conditions can be expressed as

Ly (rin)l1] 0
Ti(rinI5] | X1 = | Oin (29)
Zy(rin)l6] Tin

and
IN(roun)l1] 0
IN(rou)3] | Xy =10 (30)
In(Foun)[4] 0

where 6;, and T;, are the Laplace transforms of the radial and shear stresses that are applied on the inner
boundary of the hollow cylinder; Z; (r,)[1], Z1(ri»)[5] and Z; (r;,,)[6] are the first, fifth and sixth rows of Z1 (7;;,);
T1(rou)[ 11y T1 (rour )[3] and Zy (royu:)[4] are the first, third and fourth rows of Zy (r,,:). The combination of the
Egs. systems (28) (with k from 1 to N — 1), (29) and (30) forms a system of 6n Egs. that can be represented
in the following matrix form

M-X=F 31

where X is the vector of 6N constants Ag, By, Cy, Dy, E; and F; with k from 1 to N: X =
[Ay,B;,Cy,D{,E|,Fy,...,Ay,By,Cy, Dy, Ey, Fy]'; F is the vector of the poroelastic loadings at the
inner and outer boundaries. For the considering example of radial and shear stresses applied on the inner



Table 1 Input parameters for the numerical examples

Hp (GPa) G (GPa) My (GPa) ) Ko (mz/Pa/s)
20 10 18 0.7 10718
boundary, F can be expressed as: F = [0, OinsTin, 0, ..., O]I. The matrix M can be constructed from the
matrix Zy of the cylindrical layers as
Ty (rin)[1] 0 0 0 0 .
Iy (rin)[5] 0 0 0 0
Ty (rin)l6] 0 0 0 0
0 0 0 0 IN (rour)[1]
0 0 0 0 INTour)3]
M = 0 0 0 0 INour)4] (32)
Iy(r1) —Ix(r1) O 0 0 0
0 e Tip(ry) =Zisa (rp) ... 0 0
L 0 0 0 coi In—1(rp—1) —Zn(rn—1) _

We note that all the values in the first three rows of M are zeros except the six values in the first six columns;
all the values in the 4th, 5th and 6th rows of M are zeros except the six values in the last six columns; all the
values in the (6 k + I)th to (6 k + 6)th rows with k from 1 to N — 1 are zeros except the twelve values in
the (6 k-5)th to (6 k + 6)th columns. The matrix M depends only on the poroelastic properties and the radii
of the cylindrical layers, and the vector F is constructed by only considering the boundary conditions. We
note that the matrix M defined by Eq. (32) is constructed for the case of radial and shear stress applied on
the boundary. But it can be employed for the cases with any boundary conditions with a minor modification.
For example, if radial displacement is applied instead of the radial stress in the inner boundary, we just need
to replace the 5th row of Z1(r;,) by its 3th row, and so on. Knowing M and F, we can compute the vector
of the unknown constant X by: X = M~'.F. Once X is determined, the poromechanical fields in each local
layer can be obtained by Eqgs. (26) and (48). The solution in time space are obtained by the inverse Laplace
transform using the Stehfest’s method [13]. This method is chosen because of to its stability, fast convergence
and easy to implement in a computation code.

3 Comparisons with existing results

We consider an example with power radial variations of the poroelastic properties as

H_G_M_(r)ml_b_(r>m2./c_<r>m3 (33)
H@ Go Mo \rin) "bo \rin) ko \ri

where Hy, Go, My, by and k are certain reference parameters that are given in Table 1; m, my and m3 are the
coefficients that define the radial variations of the poroelastic properties. The present model is not limited to an
equal radiation of the elastic moduli H, G and the Biot’s Modulus. But we consider this case in this example to
make clearer the analysis. The homogeneous case corresponds to the case with m1 = my = m3 = 0, and the
poroelastic parameters are equal to the reference poroelastic parameters that are given in Table 1. Data given
in Table 1 are typical properties of shale. They are considered just for the numerical examples and benchmark
purpose. The hollow cylinder is subjected to pure shear loading (see Eq. (1)).

In some situation such as a wellbore in a petroleum reservoir, an interfacial transition zone around the
grains in concrete, cortical bone or functionally graded composite, the material properties varies smoothly in
the radial direction (see, e.g., [10]. In such a situation, the power approximation that is expressed by Eq. (34)
is appropriate for describing the spatial distribution of the material properties.

Figure 2 shows a perfect coherence between the results of the present method and the ones of Detournay and
Cheng [6] that were developed for a homogeneous cylindrical borehole: m; = my = m3 = 0 and r,,; — o0.
In this comparison, the diffusion time is fixed at one hour. The homogeneous poroelastic parameters used for
the simulation are given in Table 1. The results are plotted in the nearby region of the borehole wall up to
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Fig. 2 A comparison of the present model and the solutions of Detournay and Cheng [6] that were developed for a homogeneous
borehole. Results are obtained at § = 0

r/rin = 3. The maximum pore pressure and compression radial stress are not located at the borehole wall bet
in a nearby region. At one hour of diffusion, that region is located at r/r;, = 1.25. The absolute values of the
radial and tangent displacements and the tangent stress are maximum at the borehole wall and tend to zero at
infinity. The shear stress decreases from the applied value o,9/po = 1 to a negative value at r/r;, ~ 1.7 and
then tends to zero at the far-field region. This perfect agreement confirms the validity of the formula that is
expressed in Eq. (27) at least for the case with r,,; — 0o. Unfortunately, results for the case with a bounded
outer radius does not exist in the literature for a further validation of the transient diffusion situation.

To strengthen the validation of the developed method, another validation with radial variation of the
poroelastic properties was considered. Jabbari et al. [10] developed analytical results for the steady state
thermoelastic response of a functionally graded hollow cylinder that is subjected to a general loading condition.
Their results can be adapted to an equivalent poroelastic problem at the steady state regime with pure shear
loading by changing between the thermoelastic parameters and the poroelastic parameters. Also, it is required
to reduce the considered general loading condition to a pure shear loading condition that is defined by Eq. (1).
Such adaptation requires only a little effort and is not detailed in this paper. However, we should remark that
there is a mistyping in the results of Jabbari et al. [10]: a factor 1/2 was missing in their Eq. (51) that describe
the shear stress o,9. The adapted results will be considered to validate the present method at a large diffusion
time.

Figure 3 shows the distribution of the shear stress 0,9 in the radial direction of a hollow cylinder with:
rin/Ftour = 2/3. The poroelastic properties are defined by Eq. (33) with m; = 2, my = m3 = 0. The outer
boundary is fixed in displacement, and the inner boundary is subjected to a pure shear loading as defined by
Eq. (1). The results are given for different diffusion times that range from a short diffusion time of just one
minutes to a very large diffusion time of 10* minutes that corresponds to a steady state regime. It can be
observed that the shear stress decreases from the applied value o,9/po = 1 at the borehole wall to 20% to
40% at the outer boundary depending on the diffusion time. The shear stress at the outer boundary is higher
for a higher diffusion time. At a large diffusion time, the shear stress obtained by the present model matches
perfectly with the analytical results that were derived by Jabbari et al. [10] at the steady state regime. The
comparison of the present results and the reference results for other poromechanical fields is given in Figs. 4,
5, 6 and 7. These validations were obtained for the case with radial variations of the elastic moduli (H and G)
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Fig. 3 Shear stress of a functionally graded hollow cylinder at different diffusion times withm; =2, my =m3 =0
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Fig. 4 Radial stress of a functionally graded hollow cylinder with m; =2, my = m3 =0
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Fig. 5 Tangent stress of a functionally graded hollow cylinder with m| = 2, my =m3 =0

and the Biot’s modulus. But it is not limited to this case. Similar validations can be also obtained for the radial
variation of the Biot’s coefficient and the permeability.
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Fig. 6 Radial displacement of a functionally graded hollow cylinder with m; = 2, my = m3 =0
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Fig. 7 Tangent displacement of a functionally graded hollow cylinder with m| =2, my = m3 =0

4 Sensitivity analysis

Let us consider the problem in which the results for the case with m; = 2 are shown in Figs. 3, 4, 5 and 7. To
analyze the sensitivity of the heterogeneity on the poroelastic response of the hollow cylinder under a shear
loading, the parameters m 1, m, and m3 were allowed to vary in large ranges. The sensitivity of each parameter
will be studied separately.

Figure 8 shows the results obtained for the sensitivity of m that varies in a large range from -1 to 2. The
Biot’s coefficient and the permeability are assumed to be homogeneous in this case: my = m3 = 0. The
diffusion time was fixed at 100 min and other parameters are given in Table 1. Pore pressure is nil at both inner
and outer boundaries because of the boundary conditions. The radial distribution of pore pressure has a belly
shape. The maximum pore pressure is in the zone close to the middle of the hollow cylinder. A higher value of
m corresponds to a higher pore pressure pic. The effects of m| on both the radial and tangent displacements
are significant (Figs. 9 and 10). This dependency is quite monotonic because a higher value of m corresponds
to higher elastic moduli that leads to lower displacements at the inner boundary. The outer displacements are
nil because of the considered boundary conditions.

Figure 11 shows a very interesting sensitivity of m to the tangent stress. For m; = —1, ogg increases
monotonically from a compressive stress at the inner surface to zero at the outer surface where the displacements
are blocked. This is not the case for a positive value of m1. Indeed, with m; = 1 or 2, the minimum tangent
stress is not at the inner surface of the hollow cylinder but at a region inside the hollow cylinder that is close
to the inner surface. Dislike the case of the tangent stress, the effects of m 1 on the radial and shear stresses are
almost negligible as shown in Figs. 12 and 13. This is because the radial and shear stresses are considered as
boundary conditions that minimize the effect of the elastic moduli on these stress.

The sensitivity of the radial variation of the Biot’s coefficient on the pore pressure is shown in Fig. 14. A
large range of the parameter m, from —0.05 to 0.1 was considered. The dependence of the pore pressure on
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Fig. 8 Pore pressure distribution in the radial direction of a functionally graded hollow cylinder at 100 min of diffusion time:
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Fig. 9 Radial displacement of a functionally graded hollow cylinder: sensitivity of m
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Fig. 10 Tangent displacement of a functionally graded hollow cylinder: sensitivity of m
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Fig. 14 Pore pressure distribution in the radial direction of a functionally graded hollow cylinder at 100 min of diffusion time:
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Fig. 15 Tangent stress of a functionally graded hollow cylinder: sensitivity of m»

my is not significant even at the middle of the hollow cylinder. The effect of m» is also negligible for the other
poromechanical fields (see, e.g., Fig. 15). Such negligible Biot’s effect is naturally expected for a pure shear
loading condition that is considered herein.

Inversely, a very strong sensitivity of the results to the parameter m3 was observed (Fig. 16). In this
example, homogeneous elastic moduli and homogeneous Biot’s modulus and coefficient were considered:
m1 = my = 0.Only the permeability is assumed to vary radially. The pore pressure profile changes significantly
while changing the parameter in a range from —2 to 3.

It has a convex shape for most of the cases, but its shape can become concave for a high value of m3 = 3.
Such significant effect manifests also for other poromechanical fields as shown in Fig. 17, 18, 19, 20 and 21.
In particular, the permeability heterogeneity strongly influences the shape of the tangent stress (Fig. 19).

Figure 22 shows the results obtained for the pore pressure distribution in a thin hollow cylinder with
rin. = 0.09 (m) and r,,; = 0.1 (m). The heterogeneous parameters are m; = 2, mp = 0.1 and m3 = —2.
Pore pressure tends to zero at a large diffusion time. However, pore pressure at the middle of the cylinder is
very high at a short diffusion time. It reaches almost 2/3 of the applied shear stress at one to ten minutes of
diffusion. The tangent stress has also a quite similar shape with a high compressive value at the middle of the
cylinder (Fig. 23).

5 Conclusions
The poroelastic response of a functionally graded hollow cylinder subjected to an asymmetric loading condition

was modeled by a multilayer technique. Analytical solutions in the transformed Laplace space were obtained
for each layer. The results in Laplace space of the whole medium are obtained by considering the continuity
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Fig. 23 Tangent stress of a thin hollow cylinder with m; =2, my = 0.1 and m3 = -2

condition at the interface between the layers. The results in time space were obtained by using the Stehfest’s
numerical method for the inverse Laplace transformation.

The obtained results were compared with existing results for both the homogeneous case with transient
fluid diffusion and the steady state case with radial variations of the poroelastic properties. Perfect agreements
between the results given by the present method and the references ones were obtained.

Sensitivity analysis were realized to clarify the influence of the heterogeneous parameters on the poroelastic
response of the hollow cylinder. Significant influence of the radial variations of the elastic moduli, the Biot’s
modulus and the permeability was observed. However, the sensitivity of the results to the Biot’s coefficient is
negligible which is naturally expected for this pure shear loading case. The results obtained in this study can
be applied to offer potential applications for many fields such as: study the poroelastic response of a cortical
bone in biomechanics; study the poroelastic response of a borehole or a core sample in geomechanics; stability
of a tunnel in geotechnics, etc.
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Appendix 1: Detail development of the poromechanical fields in the Laplace space

The Laplace transform of the diffusion Eq. (17) is

3%Z; dZy _
2 _ 2 _
& _3%‘13 + ék—agk (5 +4)Zr =0 (34)

where s is the Laplace variable and the overbar stands for a variable in Laplace’s space. The normalized fluid
exchange in the transformed space that is the solution of the ordinary differential Eq. (34) can be expressed in
term of the modified Bessel functions of the first and second kinds as

Zi = Akl (&) + Bi K2 (&) (35)

where [ and K are the modified Bessel functions of the first and second kinds, respectively; the coefficients
Ay and By, are independent of the radial coordinate; the parameter & is defined by

& = r\/E (36)
Ck

Knowing the fluid exchange, other mechanical variables can be easily obtained by regarding the governing
Egs. Indeed, for each layer with homogeneous poroelastic properties, the following elegant relation can be
obtained by combining Egs. (20) to (24)

T _ bz —
B(Ek = Fkak> _ 2Gr 2Wi -
ar N Hy +Mkb,% r
and
— T _ bz
20k Wk _ 2(B - 47) (38)

Hy + Myb? or r

This differential equation system can be easily solved for two variables Wy and Ej — 1};_];71{ that yields

E—bkAI($)+kaK(§)+C 24 Dy (39)
= — —_— r J—
k= g A2 + o B Ra (S k k3
and
—  Hi+ Myb? " 1
Wi = ———*(Cur? — Dy— 40
k 3G kr k3 (40)

Using the results that are expressed by Eqgs. (35) and (39), it is now possible to calculate the transformed
pore pressure using the Laplace transformation of the Biot’s Eq. (24) as
My by,
72

Py = L&) Ay + Ka (&) By — Mybyr®Cy — Dy (41)

The corresponding radial flow rate is

21 2K
0 = —pi (11 (50 — 2@")>Ak +Be (Kl(sk) + ;f“)a
+2,3kMkbkl"Ck - ka (42)

The transformed radial and tangent displacements can be obtained regarding its relationship with the
transformed volumetric strain and the rotational coefficient W as

19

r3 ar
a1

r—[—( ® _ Ué’”)] = E; —2W; (44)

[P (v +UP)] = Ex+ 2w 43)



where Ey and Wy are defined by Eqgs. (39) and (40). Then the Laplace transformed radial and tangent displace-
ments can be obtained by integrating the formulas (43) and (44) as

21 (&) 2K> (&)
Uh = 5k<11 (&) — 226 )Ak — 6k<1<1 (&) + ; )Bk
(Hk + Mkb]% — 2Gk)r3 H + Mkb]%
6Gr TGk
1
+ 7Ek +rFy (45)
P
and
281 281 K Hy + Myb? — Gi/2)r 1 1
Ug(k)=— kz(ék)Ak_ k 2(§k)Bk+( k + Myby «/2) Ci+—Di+—Ey —rF, (46)
£ £ 3Gy 2r r3

The important properties of the modified Bessel functions given in Appendix 2 were considered to calculate
the displacements. Once the transformed radial and tangent displacements are known, the transformed radial,
tangent and shear strain components can be obtained via the strain—displacement relation (19). Then radial,
tangent and shear stress can be obtained via the Laplace transformation of the constitutive Eqs. (22) and (23)
as

50 _ _9k<11 &) 612(sk>> . 9k<1<1 &) 6K2<sk>) B,

& & & &
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_o 160 2§§k) + K& ) Be
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) ) 6Gy
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I 37 K 3K
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Appendix 2: Some properties of the modified Bessel functions

The following are some important properties of the modified Bessel functions that were considered in the
development of the present results:

f Ko@) _K1(x>_/ hw I
= = [ 20,

X X

[ Ko(x)xdx = —x K (x); [ Ip(x)xdx = xI;(x).

/Kz(x)x3dx = —4x2K2(x) — x3K1 (x);/ Iz(x)x3dr = —4x212(x) +x311 (x)

2K (x) 211 (x)

Ko(x) = Kz(x) — ilo(x) = I(x) +
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