Arrêt de service programmé du vendredi 10 juin 16h jusqu’au lundi 13 juin 9h. Pour en savoir plus
Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

H-infinity filter design for nonlinear systems with quantised measurements in finite frequency domain

Abstract : This paper deals with the problem of finite frequency (FF) H-infinity full-order fuzzy filter design for nonlinear discrete-time systems with quantised measurements, described by Takagi-Sugeno models. The measured signals are assumed to be quantised with a logarithmic quantiser. Using a fuzzy-basis-dependent Lyapunov function, the finite frequency l(2) gain definition, the generalised S-procedure, and Finsler's lemma, a set of sufficient conditions are established in terms of matrix inequalities, ensuring that the filtering error system is stable and the H-infinity attenuation level, from disturbance to the estimation error, is smaller than a given value over a prescribed finite frequency domain of the external disturbances. With the aid of Finsler's lemma, a large number of slack variables are introduced to the design conditions, which provides extra degrees of freedom in optimising the guaranteed H-infinity performance. This directly leads to performance improvement and reduction of conservatism. Finally, we give a simulation example to demonstrate the efficiency of the proposed design method, and we show that a lower H-infinity attenuation level can be obtained by our developed approach in comparison with another result in the literature.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Louise Dessaivre Connectez-vous pour contacter le contributeur
Soumis le : jeudi 7 avril 2022 - 18:07:08
Dernière modification le : vendredi 8 avril 2022 - 03:04:42




D. El Hellani, A. El Hajjaji, R. Ceschi. H-infinity filter design for nonlinear systems with quantised measurements in finite frequency domain. International Journal of Systems Science, 2017, 48 (5), pp.1048-1059. ⟨10.1080/00207721.2016.1236421⟩. ⟨hal-03634606⟩



Consultations de la notice