Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Lite CNN Models for Real-Time Post-Harvest Grape Disease Detection

Abstract : Post-harvest fruit grading is a necessary step to avoid disease related loss in quality. In this paper, a hierarchical method is proposed to (1) remove the background and (2) detect images that contains grape diseases(botrytis, oidium, acid rot). Satisfying segmentation performances were obtained by the proposed Lite Unet model with 92.9% IoU score and an average speed of 0.16s/image. A pretrained MobileNet-V2 model obtained 94% F1 score on disease classification. An optimized CNN reached a score of 89% with less than 10 times less parameters. The implementation of both segmentation and classification models on low-powered device would allow for real-time disease detection at the press.
Liste complète des métadonnées

https://hal.univ-reims.fr/hal-03647740
Contributeur : Luiz Angelo Steffenel Connectez-vous pour contacter le contributeur
Soumis le : mercredi 20 avril 2022 - 18:37:24
Dernière modification le : mardi 26 avril 2022 - 03:37:04

Fichier

EAISA2022_paper_6 (1).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03647740, version 1

Collections

Citation

Lucas Mohimont, François Alin, Nathalie Gaveau, Luiz Angelo Steffenel. Lite CNN Models for Real-Time Post-Harvest Grape Disease Detection. Workshop on Edge AI for Smart Agriculture (EAISA 2022), Jun 2022, Biarritz, France. ⟨hal-03647740⟩

Partager

Métriques

Consultations de la notice

17

Téléchargements de fichiers

11