Arrêt de service lundi 11 juillet de 12h30 à 13h : tous les sites du CCSD (HAL, Epiciences, SciencesConf, AureHAL) seront inaccessibles (branchement réseau à modifier)
Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Neural Feature Extraction for the Analysis of Parkinsonian Patient Handwriting

Abstract : Parkinson's is a disease of the central nervous system characterized by neuronal necrosis. Patients at the time of diagnosis have already lost up to 70% of the neurons. It is essential to define early detection techniques to promptly intervene with an appropriate therapy. Handwriting analysis has been proven as a reliable method for Parkinson's disease diagnose and monitoring. This paper presents an analysis of a Parkinson's disease handwriting dataset in which neural networks are used as a tool for analyzing the problem space. The goal is to check the validity of the selected features. For estimating the data intrinsic dimensionality, a preliminary analysis based on PCA is performed. Then, a comparative analysis about the classification performances of a multilayer perceptron (MLP) has been conducted in order to determine the discriminative capabilities of the input features. Finally, fifteen temporal features, capable of a more meaningful discrimination, have been extracted and the classification performances of the MLP trained on these new datasets have been compared with the previous ones for selecting the best features. \textcopyright 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : mercredi 1 juin 2022 - 19:36:56
Dernière modification le : jeudi 2 juin 2022 - 03:00:13




V. Randazzo, G. Cirrincione, A. Paviglianiti, E. Pasero, F.C. Morabito. Neural Feature Extraction for the Analysis of Parkinsonian Patient Handwriting. Smart Innovation, Systems and Technologies, 2021, 184, pp.243--253. ⟨10.1007/978-981-15-5093-5_23⟩. ⟨hal-03685099⟩



Consultations de la notice