Arrêt de service lundi 11 juillet de 12h30 à 13h : tous les sites du CCSD (HAL, Epiciences, SciencesConf, AureHAL) seront inaccessibles (branchement réseau à modifier)
Accéder directement au contenu Accéder directement à la navigation
Chapitre d'ouvrage

Analytic Traveling-Wave Solutions of the Kardar-Parisi-Zhang Interface Growing Equation with Different Kind of Noise Terms

Abstract : The one-dimensional Kardar-Parisi-Zhang dynamic interface growth equation with the traveling-wave Ansatz is analyzed. As a new feature additional analytic terms are added. From the mathematical point of view, these can be considered as various noise distribution functions. Six different cases were investigated among others Gaussian, Lorentzian, white or even pink noise. Analytic solutions are evaluated and analyzed for all cases. All results are expressible with various special functions Mathieu, Bessel, Airy or Whittaker functions showing a very rich mathematical structure with some common general characteristics. This study is the continuation of our former work, where the same physical phenomena was investigated with the self-similar Ansatz. The differences and similarities among the various solutions are enlightened. © 2020, Springer Nature Switzerland AG.
Type de document :
Chapitre d'ouvrage
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03691010
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : mercredi 8 juin 2022 - 17:15:44
Dernière modification le : jeudi 9 juin 2022 - 03:37:05

Lien texte intégral

Identifiants

Collections

Citation

I. Barna, G. Bognár, L. Mátyás, M. Guedda, K. Hriczó. Analytic Traveling-Wave Solutions of the Kardar-Parisi-Zhang Interface Growing Equation with Different Kind of Noise Terms. Differential and Difference Equations with Applications, 333, Springer International Publishing, pp.239-253, 2020, Springer Proceedings in Mathematics & Statistics, ⟨10.1007/978-3-030-56323-3_19⟩. ⟨hal-03691010⟩

Partager

Métriques

Consultations de la notice

0