Arrêt de service lundi 11 juillet de 12h30 à 13h : tous les sites du CCSD (HAL, Epiciences, SciencesConf, AureHAL) seront inaccessibles (branchement réseau à modifier)
Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks.

Abstract : With the steep rise in the development of smart grids and the current advancement in developing measuring infrastructure, short term power consumption forecasting has recently gained increasing attention. In fact, the prediction of future power loads turns out to be a key issue to avoid energy wastage and to build effective power management strategies. Furthermore, energy consumption information can be considered historical time series data that are required to extract all meaningful knowledge and then forecast the future consumption. In this work, we aim to model and to compare three different machine learning algorithms in making a time series power forecast. The proposed models are the Long Short-Term Memory (LSTM), the Gated Recurrent Unit (GRU) and the Drop-GRU. We are going to use the power consumption data as our time series dataset and make predictions accordingly. The LSTM neural network has been favored in this work to predict the future load consumption and prevent consumption peaks. To provide a comprehensive evaluation of this method, we have performed several experiments using real data power consumption in some French cities. Experimental results on various time horizons show that the LSTM model produces a better result than the GRU and the Drop-GRU forecasting methods. There are fewer prediction errors and its precision is finer. Therefore, these predictions based on the LSTM method will allow us to make decisions in advance and trigger load shedding in cases where consumption exceeds the authorized threshold. This will have a significant impact on planning the power quality and the maintenance of power equipment.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03697163
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : jeudi 16 juin 2022 - 15:07:50
Dernière modification le : vendredi 17 juin 2022 - 03:07:38

Lien texte intégral

Identifiants

Collections

Citation

Sameh Mahjoub, Larbi Chrifi-Alaoui, Bruno Marhic, Laurent Delahoche. Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks.. Sensors (Basel, Switzerland), 2022, 22 (11), ⟨10.3390/s22114062⟩. ⟨hal-03697163⟩

Partager

Métriques

Consultations de la notice

0