Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Article dans une revue

Comparative Study of Heuristic Algorithms for Electrical Impedance Tomography

Abstract : Based on electrical measurements from electrodes placed around the boundary of a body, electrical impedance tomography (EIT) is an imaging procedure that recovers the spatial distribution of the conductivities in the interior of a body. Recent studies have shown promising results in reconstructing EIT images using heuristic algorithms. This work presents a study of the applicability of six heuristic algorithms - firefly algorithm (FA), novel bat algorithm (NBA), genetic algorithm with new multi-parent crossover (GA-MPC), success history-based adaptive differential evolution with linear population size reduction with semi-parameter adaptation hybrid with covariance matrix adaptation evolutionary strategy (LSHADE-SPACMA), ensemble sinusoidal differential covariance matrix adaptation (LSHADE-cnEpSin), and effective butterfly optimizer with covariance matrix adapted retreat phase (EBOwithCMAR) - for the EIT image reconstruction problem. These algorithms have never been employed to solve the EIT inverse problem. Series of numerical tests were carried out to compare the performance of the selected algorithms. \textcopyright 2020, Department of Science and Technology. All rights reserved.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : samedi 18 juin 2022 - 20:59:49
Dernière modification le : vendredi 5 août 2022 - 11:23:15


  • HAL Id : hal-03698718, version 1



A.C. Velasco, Marion Darbas, R. Mendoza, M. Bacon, J.C. De Leon. Comparative Study of Heuristic Algorithms for Electrical Impedance Tomography. Philippine Journal of Science, 2020, 149 (3), pp.747--772. ⟨hal-03698718⟩



Consultations de la notice