Estimation of Activity Coefficients for Aqueous Organic Redox Flow Batteries: Theoretical Basis and Equations. - Université de Picardie Jules Verne Accéder directement au contenu
Article Dans Une Revue iScience Année : 2022

Estimation of Activity Coefficients for Aqueous Organic Redox Flow Batteries: Theoretical Basis and Equations.

Résumé

The field of aqueous organic redox flow batteries (AORFBs) has been developing fast in recent years, and many chemistries are starting to emerge as serious contenders for grid-scale storage. The industrial development of these systems would greatly benefit from accurate physics-based models, allowing to optimize battery operation and design. Many authors in the field of flow battery modeling have brought evidence that the dilute solution hypothesis (the assumption that aqueous electrolytes behave ideally) does not hold for these systems and that calculating cell voltage or chemical potentials through concentrations rather than activities, while serviceable, may become insufficient when greater accuracy is required. This article aims to provide the theoretical basis for calculating activity coefficients of aqueous organic electrolytes used in AORFBs to provide tools to predict the concentrated behavior of aqueous electrolytes, thereby improving the accuracy of physics-based models for flow batteries.

Domaines

Matériaux

Dates et versions

hal-03783910 , version 1 (22-09-2022)

Identifiants

Citer

Gaël Mourouga, Déborah Chery, Emmanuel Baudrin, Hyacinthe Randriamahazaka, Thomas J. Schmidt, et al.. Estimation of Activity Coefficients for Aqueous Organic Redox Flow Batteries: Theoretical Basis and Equations.. iScience, 2022, 25 (9), pp.104901. ⟨10.1016/j.isci.2022.104901⟩. ⟨hal-03783910⟩
55 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More