Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Communication dans un congrès

Robust finite-frequency H-infinity model reduction for uncertain 2D discrete systems

Abstract : In this work, robustness and convergence properties of model reduction are investigated for discrete two-dimensional (2D) systems in the Fornasini-Marchesini (F-M) model with polytopic uncertainties. The goal is to design a reduced order model minimizing H-infinity performance in a known finite-frequency (FF) area of the noises able to reproduce the behavior of the uncertain 2D original system. Using Lyapunov function and generalized Kalman Yakubovich Popov (gKYP) lemma, sufficient conditions for the existence of the FF reduced order design approach are formulated as feasibility of a set of Linear Matrix Inequalities (LMIs). Numerical simulations are given to illustrate the validity and feasibility of the designed reduced-order model.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03833277
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : vendredi 28 octobre 2022 - 12:07:29
Dernière modification le : mardi 22 novembre 2022 - 14:26:16

Identifiants

Collections

Citation

Abderrahim El-Amrani, Ahmed El Hajjaji, Jerome Bosche, Abdel Aitouche. Robust finite-frequency H-infinity model reduction for uncertain 2D discrete systems. 2022 30TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), Jun 2022, Athènes, Greece. pp.158-163, ⟨10.1109/MED54222.2022.9837190⟩. ⟨hal-03833277⟩

Partager

Métriques

Consultations de la notice

0