Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Chapitre d'ouvrage

Double Channel Neural Non Invasive Blood Pressure Prediction

Abstract : Cardiovascular Diseases represent the leading cause of deaths in the world. Arterial Blood Pressure (ABP) is an important physiological parameter that should be properly monitored for the purposes of prevention. This work applies the neural network output-error (NNOE) model to ABP forecasting. Three input configurations are proposed based on ECG and PPG for estimating both systolic and diastolic blood pressures. The double channel configuration is the best performing one by means of the mean absolute error w.r.t the corresponding invasive blood pressure signal (IBP); indeed, it is also proven to be compliant with the ANSI/AAMI/ISO 81060-2:2013 regulation for non invasive ABP techniques. Both ECG and PPG correlations to IBP signal are further analyzed using Spearman’s correlation coefficient. Despite it suggests PPG is more closely related to ABP, its regression performance is worse than ECG input configuration one. However, this behavior can be explained looking to human biology and ABP computation, which is based on peaks (systoles) and valleys (diastoles) extraction.
Type de document :
Chapitre d'ouvrage
Liste complète des métadonnées
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : mercredi 9 novembre 2022 - 16:34:47
Dernière modification le : jeudi 10 novembre 2022 - 03:09:41




Annunziata Paviglianiti, Vincenzo Randazzo, Giansalvo Cirrincione, Eros Pasero. Double Channel Neural Non Invasive Blood Pressure Prediction. Intelligent Computing Theories and Application, 12463, Springer International Publishing, pp.160-171, 2020, Lecture Notes in Computer Science, ⟨10.1007/978-3-030-60799-9_14⟩. ⟨hal-03845676⟩



Consultations de la notice