Recent Advances in Oncogenic Roles of the TRPM7 Chanzyme - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Current Medicinal Chemistry Année : 2016

Recent Advances in Oncogenic Roles of the TRPM7 Chanzyme

(1) , , , , , (1) , (1)
1

Résumé

Transient Receptor Potential Melastatin-related 7 (TRPM7) is a non-selective cation channel fused with a functional kinase domain. Physiologically, TRPM7 channel is involved in magnesium homeostasis, cell survival and gastrulation. The channel part is responsible for calcium, magnesium, and metal trace entries. Cation current through TRPM7 channel is inhibited by both intracellular magnesium and magnesium complexed with nucleotides. In parallel, the kinase is able to phosphorylate cytoskeleton proteins like myosin chain regulating cell tension and motility. Moreover, TRPM7 kinase domain can be cleaved by caspase and participates to apoptosis signaling. Importantly, TRPM7 channel expression is aberrant in numerous cancers including breast, glioblastoma, nasopharynx, ovarian, and pancreatic. Moreover, TRPM7 high expression is an independent biomarker of poor outcome in breast cancer. Pharmacological modulation or silencing of TRPM7 strongly affects proliferation, adhesion, migration or invasion in cancer cell lines. Nevertheless, it is still not clear by which mechanism TRPM7 channels may disturb cancer cell hallmarks. In the present review, we will discuss the role of TRPM7 channels in malignancies. In particular, we will distinguish the role of cation signaling from kinase function in order to better understand how TRPM7 channels may play a central role in cancer progression. We will also discuss the recent advances in pharmacological blockers of TRPM7 and their potential use for cancer therapy.
Fichier non déposé

Dates et versions

hal-03607844 , version 1 (14-03-2022)

Identifiants

Citer

Mathieu Gautier, Marianne Perriere, Michael Monet, Alison Vanlaeys, Irina Korichneva, et al.. Recent Advances in Oncogenic Roles of the TRPM7 Chanzyme. Current Medicinal Chemistry, 2016, 23 (36), pp.4092-4107. ⟨10.2174/0929867323666160907162002⟩. ⟨hal-03607844⟩

Collections

U-PICARDIE LPCM
12 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More