Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

SPLITTING THEOREMS ON COMPLETE RIEMANNIAN MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE

Abstract : In this paper we provide some local and global splitting results on complete Riemannian manifolds with nonnegative Ricci curvature. We achieve the splitting through the analysis of some pointwise inequalities of Modica type which hold true for every bounded solution to a semilinear Poisson equation. More precisely, we prove that the existence of a nonconstant bounded solution u for which one of the previous inequalities becomes an equality at some point leads to the splitting results as well as to a classification of such a solution u.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03621400
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : lundi 28 mars 2022 - 10:56:50
Dernière modification le : mercredi 14 septembre 2022 - 17:50:35

Lien texte intégral

Identifiants

Collections

Citation

Alberto Farina, Jesus Ocariz. SPLITTING THEOREMS ON COMPLETE RIEMANNIAN MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE. Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, 2021, 41 (4), pp.1929-1937. ⟨10.3934/dcds.2020347⟩. ⟨hal-03621400⟩

Partager

Métriques

Consultations de la notice

3