Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Intelligent Quality Assessment of Geometrical Features for 3D Face Recognition

Abstract : This paper proposes a methodology to assess the discriminative capabilities of geometrical descriptors referring to the public Bosphorus 3D facial database as testing dataset. The investigated descriptors include histogram versions of Shape Index and Curvedness, Euclidean and geodesic distances between facial soft-tissue landmarks. The discriminability of these features is evaluated through the analysis of single block of features and their meanings with different techniques. Multilayer perceptron neural network methodology is adopted to evaluate the relevance of the features, examined in different test combinations. Principle component analysis (PCA) is applied for dimensionality reduction.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03631443
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : mardi 5 avril 2022 - 16:25:16
Dernière modification le : vendredi 5 août 2022 - 11:21:49

Identifiants

Collections

Citation

G. Cirrincione, F. Marcolin, S. Spada, E. Vezzetti. Intelligent Quality Assessment of Geometrical Features for 3D Face Recognition. QUANTIFYING AND PROCESSING BIOMEDICAL AND BEHAVIORAL SIGNALS, Jun 2017, Vietri sul Mare, Italy. pp.253-264, ⟨10.1007/978-3-319-95095-2\_24⟩. ⟨hal-03631443⟩

Partager

Métriques

Consultations de la notice

2