Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Finite Frequency Approach for H-infinity model reduction of 2D continuous systems

Abstract : This paper considers the problem of H-infinity model reduction problem with finite frequency (FF) ranges of the input vector for two-dimensional (2D) continuous systems. Given an asymptotically stable system, the main objective is to find a stable reduced-order model such that the error of the transfer functions between the original system and the reduced-order one is bounded over a FF range. Using the well known generalized Kalman Yakubovich Popov (gKYP) Lemma and the Finsler's Lemma, sufficient conditions for the existence of H-infinity model reduction for different FF ranges are proposed and then unified in terms of solving a set of linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed method is illustrated by a numerical example.
Type de document :
Communication dans un congrès
Liste complète des métadonnées
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : mercredi 6 avril 2022 - 18:33:59
Dernière modification le : mercredi 7 septembre 2022 - 08:14:05


  • HAL Id : hal-03633205, version 1


Abderrahim El-Amrani, Ahmed El Hajjaji, Ismail Boumhidi, Abdelaziz Hmamed, Abdel Aitouche. Finite Frequency Approach for H-infinity model reduction of 2D continuous systems. 2019 27TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), Jul 2019, Akko, Israel. pp.177-182. ⟨hal-03633205⟩



Consultations de la notice