Arrêt de service programmé du vendredi 10 juin 16h jusqu’au lundi 13 juin 9h. Pour en savoir plus
Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

H-infinity model reduction for two-dimensional discrete systems in finite frequency ranges

Abstract : This paper examines the design problem H-infinity of the reduced order model for two-dimensional (2D) discrete systems described by the Roesser model with a control input assumed to operate in a finite frequency (FF) domain. Given an asymptotically stable system; our goal is to find a stable reduced order system so that the error of the transfer functions between the original system and the reduced order is limited to a range FF. Using the well-known generalized lemma of Kalman Yakubovich Popov (gKYP) and the Finsler's lemma, sufficient conditions for the existence of the reduction of the H-infinity model for different FF ranges are proposed and then unified in terms of solving a set of linear matrix inequalities (LMIs). An illustrative example is provided to show the utility and potential of the proposed results.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03633228
Contributeur : Louise Dessaivre Connectez-vous pour contacter le contributeur
Soumis le : mercredi 6 avril 2022 - 18:57:10
Dernière modification le : samedi 23 avril 2022 - 15:51:42

Identifiants

  • HAL Id : hal-03633228, version 1

Collections

Citation

Abderrahim El-Amrani, Ahmed El Hajjaji, Bensalem Boukili, Abdelaziz Hmamed. H-infinity model reduction for two-dimensional discrete systems in finite frequency ranges. 2018 26TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), Jun 2018, Zadar, Croatia. pp.885-890. ⟨hal-03633228⟩

Partager

Métriques

Consultations de la notice

7