Arrêt de service lundi 11 juillet de 12h30 à 13h : tous les sites du CCSD (HAL, Epiciences, SciencesConf, AureHAL) seront inaccessibles (branchement réseau à modifier)
Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A New Unsupervised Neural Approach to Stationary and Non-Stationary Data

Abstract : Dealing with time-varying high dimensional data is a big problem for real time pattern recognition. Non-stationary topological representation can be addressed in two ways, according to the application: life-long modeling or by forgetting the past. The G-EXIN neural network addresses this problem by using life-long learning. It uses an anisotropic convex polytope, which, models the shape of the neuron neighborhood, and employs a novel kind of edge, called bridge, which carries information on the extent of the distribution time change. In order to take into account the high dimensionality of data, a novel neural network, named GCCA, which embeds G-EXIN as the basic quantization tool, allows a real-time non-linear dimensionality reduction based on the Curvilinear Component Analysis. If, instead, a hierarchical tree is requested for the interpretation of data clustering, the new network GH-EXIN can be used. It uses G-EXIN for the clustering of each tree node dataset. This chapter illustrates the basic ideas of this family of neural networks and shows their performance by means of synthetic and real experiments. \textcopyright Springer Nature Switzerland AG 2021.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : lundi 30 mai 2022 - 15:06:58
Dernière modification le : mardi 31 mai 2022 - 03:00:17




V. Randazzo, G. Cirrincione, E. Pasero. A New Unsupervised Neural Approach to Stationary and Non-Stationary Data. Intelligent Systems Reference Library, 2021, 189, pp.125--145. ⟨10.1007/978-3-030-51870-7_7⟩. ⟨hal-03681742⟩



Consultations de la notice