Arrêt de service lundi 11 juillet de 12h30 à 13h : tous les sites du CCSD (HAL, Epiciences, SciencesConf, AureHAL) seront inaccessibles (branchement réseau à modifier)
Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

C r-prevalence of stable ergodicity for a class of partially hyperbolic systems

Abstract : We prove that for r E N>2 U \oo\, for any dynamically coherent, center bunched and strongly pinched volume preserving Cr partially hyperbolic diffeomorphism f : X ! X, if either (1) its center foliation is uniformly compact, or (2) its center-stable and center-unstable foliations are of class C1, then there exists a C1-open neighborhood off in Diffr .X; Vol/, in which stable ergodicity is Cr-prevalent in Kolmogorov???s sense. In particular, we verify Pugh???Shub???s stable ergodicity conjecture in this region. This also provides the first result that verifies the prevalence of stable ergodicity in the measure-theoretical sense. Our theorem applies to a large class of algebraic systems. As applications, we give affirmative answers in the strongly pinched region to: 1. an open question of Pugh???Shub (1997); 2. a generic version of an open question of Hirsch???Pugh???Shub (1977); and 3. a generic version of an open question of Pugh???Shub (1997).
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-u-picardie.archives-ouvertes.fr/hal-03696976
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : jeudi 16 juin 2022 - 13:17:54
Dernière modification le : vendredi 17 juin 2022 - 03:11:42

Lien texte intégral

Identifiants

Collections

Citation

Martin Leguil, Zhiyuan Zhang. C r-prevalence of stable ergodicity for a class of partially hyperbolic systems. Journal of the European Mathematical Society, 2022, 24 (9), pp.3379-3438. ⟨10.4171/JEMS/1163⟩. ⟨hal-03696976⟩

Partager

Métriques

Consultations de la notice

0