Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Communication dans un congrès

Smart and predictive heating system: Belief model for indoor regulation

Abstract : The objective of this paper is to investigate a method to model data uncertainties in order to regulate a smart heating system that reduces energy consumption. To achieve this, we propose a multilevel data fusion system that provides a contextual trend, based on the belief theory of Dempster-Shafer for data combination and the Transferable Belief Model (TBM) to take the decision. The fusion system combines the weather forecast and the thermal comfort associated to the occupant's activities and habits. The challenge we took is complex as the data to be fused are highly uncertain and heterogeneous but our method proved its efficiency as we obtain very satisfactory simulation results.
Type de document :
Communication dans un congrès
Liste complète des métadonnées
Contributeur : Louise DESSAIVRE Connectez-vous pour contacter le contributeur
Soumis le : vendredi 11 novembre 2022 - 18:10:59
Dernière modification le : samedi 12 novembre 2022 - 03:07:23




Ameni Makhlouf, Bruno Marhic, Laurent Delahoche, Larbi Chrifi Alaoui, Hassani Messaoud. Smart and predictive heating system: Belief model for indoor regulation. 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Dec 2015, Monastir, Tunisia. pp.728-733, ⟨10.1109/STA.2015.7505206⟩. ⟨hal-03849471⟩



Consultations de la notice